미적분 자작문제 하나!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대가리 깨질뻔 ㅎㅎ
-
ㄹㅇ…
-
각과목 만점자한테 가르침받으면 수능의 모든정수를 알려줄거니깐 1등급까지 쉽게 가지...
-
개국 0
근데 궁금한 게 있는데 약대 나와서 취업하고 회사 다니면서 약국 차려놓을 수...
-
실모기만질ㅇㅈ 6
네
-
논술 수험표 0
컬러로만 뽑아야 하나요? 흑백 안 됨??
-
그치 이거지 ㅠㅠㅠㅠㅠ
-
여대가고싶다고만 올렸더니 먼... 단체로 조롱에 어이가 없내요 찡찡거려서 ㅈㅅ...
-
어그로 ㅈㅅ 연고서성한중경 컴공이나 공대 희망하는데 물지 -> 지구사문 어떤가요
-
공부인증 7
3강도 들으려했으니 81분이라 포기.
-
클리드방송보기 1
흐흐
-
현역 고민상담 0
현역때 물1 지1을 선택한 학생입니다. 이번 수능에서 탐구는 45 42로 나쁘지않은...
-
신기하네...
-
(사탐런 하시는 분들 말고) 과탐 원과목 선택 고민 되시는 분들 하던 과목 하시는...
-
on 3
치지직
-
미적88 확통94 기하91 예상 절망회로 풀가동
-
신청한김에 영어독해문제집 풀어보고싶은데 어떤강의가 좋은가요???
-
백환 언매 0
들어보신분 있나요? 방학때 현강 들어볼까 해서요
-
외모
-
다들 어디갓어 불금이라고 즐기고 있나본데
-
수시 종합 "국민 인하 숭실" 중에서 뭐가 제일 높고 낮음?
-
진학사를 안사서 그런데 혹시 서강대 다군 자전 점수컷이 어떻게 되는지 알 수...
-
심신수양 필요
-
영단어 암기 팁 2
인지 심리학 입문, 장기기억(부호화) 내용 중 *정교화는 입력 자극에 부가적인...
-
누워있고 앉아있기만 해서 그런가진짜 지금 시발 죽을거같음
-
대강 분위기 보니 컷이 46이면 1이 너무 적고 45라면 은근 많은 느낌이네요...
-
재수 사탐 3
재수 예정인데 사탐런해야될지 고민입니다. 목표는 서성한 이상의 공대입니다. 이번수능...
-
공통수학 복습하고 뭐로 하지.. 고쟁이블랙라벨자이스토리벅벅.......?
-
ㅇㅇ
-
과탐은 진짜 너무 싫을듯
-
아니 어차피 수학은 모든 수험생이 다 치는데 내가 2점 떨어지면 경쟁자도 2점...
-
내돈내산 텔그 3
ㅁㅌㅊ?
-
걍 올해 사탐런 치고 끝냈어야하는데 난 왜 과탐을 했을까 내년에도 사탐런 개많이할텐데…
-
참고로 난 남자임
-
나도 사탐런하긴 했지만 솔직히 여태껏 수능 기출중에 제일 타임어택 심하지 않았나…...
-
합격 ㅇㅈ 13
그런데 이제 대학원임
-
국숭세단 문과기준 순위가 어떻게되나요? 학과 아무거나 상관없구오!
-
25강기분 했었는데 한 번 더 보려고 26것도 들을건데 그냥 맘 편하게 올해...
-
1년 간 돈벌고 0
마지막 1년 수험생활을 준비해야지
-
화2 지2에서 벽을 느껴 과탐을 바꾸려고 합니다. 목표는 백분위 98~만점 이고...
-
누워서 폰해야지
-
ㅈㅂ..
-
나참 0
학부생이 모를 수 있긴 한데.. 후생유전이 썰이라는 학부생은 또 처음 본다. 해서...
-
신기하뇨이
-
그냥 보편적인 인식이나 등등
-
세종대 나노신소재학과 생각 중인디 보통 나노신소재공은 취업을 어디로 하나요? +...
-
어문 제외 라인높이고싶습니다
-
수능 치고 나서 붙을까 안붙을까 걱정하면서 잠못자고 싶진 않다 떨어져서 재수는...
-
빅파이련 2
이런말하명안되죠?
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요