2025年 사관학교 27,28,29,30 Solution
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
저 어떡해요 2
현역이고 공부 늦게 시작해서 아직 수2 개념하고잇는데 어캄요ㅜㅜㅜ 확통은 시작도안함...
-
빨리 좀 발표했으면 과외도 구하고, 자취방에 물건도 사넣고 싶은데
-
언매 전형태 고전시가 강기본 하고 문학 독서 고민 중… 고2거는 고정1나오고 고3국어 모고는 안해봄
-
진심 내가 이렇게 빡통일줄 알았으면 자퇴 안 햇음... 난 적어도 내가 평균 이상일...
-
고대 개잘하네...
-
노베 내신 현역 수능 7등급이였는데 계획안이에여 검토 해주세여 국어 김승리 이번에...
-
11수 한 사람도 존재하는데
-
가산점 3%받고 이런 대학은 어캐 취급되는거임?
-
집가서 맥주마셔야지 14
오늘너무힘들었어요 집가서 맥주마시고쉴거에요 근데집도착할려면 한참남았어요
-
짜장면 맛있다 3
근데 확실히 짜장면은 첫 젓가락이 압도적으로 맛있고 그 이후부턴 급속도로 물리기...
-
아직 때가 아닌가
-
고시? 로스쿨? 그딴게 되겟냐ㅠㅋㅋㅋㅋㅋ
-
6모 96 9모 100 올수 96(22틀 ㅅㅂ)인데 걍 n제풀면서 감유지만 해도 될까요
-
그게 나야 바 둠바 두비두밥~ ^^
-
성공한 사람들 공부법이 수십수백개는 되는거같음... 대충 맞는 방향이면 뭐든 되는 것이 아닐까
-
오늘 중앙대 논술 보고왔는데 세종대도 가는게 좋을까요?
-
모공 논술 쳤는데 수학을 거의 못품 ㅋㅋ 정시로 갈 수 있을라나...
-
사이비인줄알고 끝까지 의심했는데 아니었네 착한사람
-
수학공부 2
수학공부를 하는데 진짜로 현우진쌤이 말한거처럼 로그함수다하고 삼각함수다하고 수열쪽...
-
언매하는 거 이득이 있을까요? 언매 내신떄 했어서 유베긴 한데 독서 문학 공부를...
-
지리학자가 술마신 탐험가 거르는거 좋게 평가하셨나요 안좋게 평가하셨나요? 전 안좋게 평가함
-
메가패스 사야지 0
다음주면 기간 끝나네 군필5수 렛츠고
-
서강대정문 앞 지나가는데 긴다리 미녀들이 4명이서 손잡고 지나가던데
-
무지성스나를갈겨
-
자유석이었나요??
-
국숭vs부.경 0
경기도 사는데 어디가 좋을까여,,, 제가 씹프피라 말에 상처를 쫌 많이 받는데...
-
막 과탐에 가산점 줘서 사실상 못 가고 그런 것 말고 진짜로 사탐 응시해서 갈 수...
-
143만..
-
난 걍 도함수만 그렸는데 가끔 풀이 보면 원함수도 있길래 원함수가 필요한 문제였나
-
ㄹㅇ 다 노베수준인데
-
사문 질문 많이 받아주셔서 감사인사 드리고싶은데 탈릅하셨네..
-
내년 고논은 0
상경계열도 다 4합8인가요??
-
그게 사실 나 아닐까?
-
나를 따르라 4
팔로우 ㄱㄱ헛
-
하...
-
국어랑 영어는 1인데 수학이랑 과탐이 노베여서 수학은 기하선택이고 물,지할려그러는데...
-
그분들은 시위따윈 관심 없겠지?
-
이 똥컴 ㅠ
-
역시집에잏으면… 3
공부를안함 분명 아침에는 “오늘 집에서 편하게 공부하자!!!!!!!” 마음을...
-
"ㄷ여대 출신 며느리는 절대" 산업인력공단 이사장 글 논란 5
고용노동부 산하기관인 한국산업인력공단의 이사장이 최근 남녀공학 전환 논의를 둘러싸고...
-
경북대 프렉탈 0
프렉탈 근 1년만에 처음 푼듯 수특수완기출 다 유기했는데 어려웠으면 큰일날뻔 ㅋㅋ
-
올해 현여기라 긴장 거의 안하고 봤는데고 국어 지문 읽을땐 ㅈㄴ 튕기던데;;
-
왜냐하면 제가 미적 3틀 88이기 때문입니다 제발살려줘!!!
-
문학은 이제 감잡은것 같은데 비문학 하나도 모르겠어서 한과목씩 공부하는게 체질인것...
-
화학 선택했다하면 거의 50이고 아니면 47박고 울고있음
-
내년에 0
하스스톤 화끈하게 현질할 정도로 돈 벌어야지
-
오늘 저한테 2
고사장 들어갈 때 인사하고 나올 때도 인사해주신 15시 논술 여성분 꼭 붙으시길...
-
나는 이새끼한테 진 패배자 버러지인데 그럼에도 놓아주기 쉽지않네 정말 질긴 악연이다
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데