6月 기하 28,29,30 Solution
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
역시집에잏으면… 0
공부를안함 분명 아침에는 “오늘 집에서 편하게 공부하자!!!!!!!” 마음을...
-
"ㄷ여대 출신 며느리는 절대" 산업인력공단 이사장 글 논란 2
고용노동부 산하기관인 한국산업인력공단의 이사장이 최근 남녀공학 전환 논의를 둘러싸고...
-
경북대 프렉탈 0
프렉탈 근 1년만에 처음 푼듯 수특수완기출 다 유기했는데 어려웠으면 큰일날뻔 ㅋㅋ
-
올해 현여기라 긴장 거의 안하고 봤는데고 국어 지문 읽을땐 ㅈㄴ 튕기던데;;
-
왜냐하면 제가 미적 3틀 88이기 때문입니다 제발살려줘!!!
-
문학은 이제 감잡은것 같은데 비문학 하나도 모르겠어서 한과목씩 공부하는게 체질인것...
-
화학 선택했다하면 거의 50이고 아니면 47박고 울고있음
-
내년에 0
하스스톤 화끈하게 현질할 정도로 돈 벌어야지
-
오늘 저한테 1
고사장 들어갈 때 인사하고 나올 때도 인사해주신 15시 논술 여성분 꼭 붙으시길...
-
나는 이새끼한테 진 패배자 버러지인데 그럼에도 놓아주기 쉽지않네 정말 질긴 악연이다
-
나무위키로 때워야지
-
오늘은 밤샘 애니를 16
수능두 끝났는 데 누가 날 막아 하하하
-
컴공의 재미는 4
알고리즘 문제 풀기
-
동덕여대 논술 1
어느등급대가 보는걸 추천하시나요
-
간단 소개 - (나)는 2가지 조건에 의해 가의 도덕적 의무에 긍정적으로 볼 것...
-
공부 권태가 더 심하네.. 한국가면 공부하려했는데
-
쉬워보였는데 능지 이슈로 못품 쉬웠나요?
-
안녕. 8
-
으흐흐
-
누군가가 보고 싶은 저녁입니다 분명 온다고 하셨는데
-
표본 보면 다 화학 끼고있네 ㅠㅜㅠ
-
상수를 변수로 취급해서 풀어야하는 문제도 있나요?
-
인복 하나는 2
메디컬권인듯
-
이거지
-
모음조화 8
모음 좋아
-
안녕하세요 고2 노베이스 학생입니다 수시는 5.6이였다가 정말 가망이 없을 거...
-
그냥 하루종일 7
모니터링을 듣는중
-
벌써 곧 12월이고 곧 등급이 나옴..... 심지어 고3들이 알아오는거까지 하면...
-
배꼽 3
킥킥 히히 똥오줌 발싸
-
아직도 머리 속에서 안 떠나감....
-
마라탕시킴 15
동생이먹재
-
남음.. ㅎㅎ 생각보다 빠르다
-
수능 끝나고 커뮤 여기저기 돌면서 최악의 시나리오대로 등급컷 올려치기하고 물타기...
-
입대 이틀 실화냐 11
26년 안 올듯
-
6,9,수능 2등급 인데 Att 소문항 1-1~2 과논 절반 합격 ㄱㄴ?
-
메가에서 현우진 시발점+뉴런 기하 살까 하는데 좀 아깝기도 해서 그냥 배성민이나...
-
물1 난이도비교 5
ㅇ
-
'배꼽'은 'ᄇᆡᆺ복>ᄇᆡᆺ곱>뱃곱>배꼽'의 변화를 겪은 거라 원래부터 '곱'이었던...
-
도형, 백터 어려운 문제들 어떻게 공부 하셨나요? 그냥 기출 여러번 풀어보며 공부하면 될까요?
-
하 고민되네
-
수학 기출문제집 1
수학 노베라서 과외중인데 쌤이 개념 하면서 기출도 같이 하자고 하셔서용 자이나...
-
엄,,
-
소문의 벽은 되게 감명 깊게 봤는데
-
대체 뭐지 0
난 이감을 시즌 1,2,3을 사뒀음. 난 이감을 2-2까지만 풀고 1부터...
-
ㅎㅇㅎㅇ 7
-
수학 쎈 help 11
근데 모 덕코 걸라는데 저 xdk인가 그건가용?
-
누구 하나는 분명히 죽을텐데 누가 죽을까
-
지1:고2 내신 때 빡세게 해놓음 지2:고3 내신 대비 같이 할 수 있음 같은...
-
나만 두개 배웠나
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..