삼각함수 인사이트
쓸만한 삼각함수 인식 방법 하나를 알려드리겠습니다.
앞으로 삼각함수는 이렇게 인식하세요.
문제입니다. (출처: 2023 고2 12월 모의고사)
결국 저 코사인 값이
이 사이 값을 가져야겠죠.
그럼 우선 코사인 함수를 그립니다.
cos(3x+b) 말고 cos x요.
여기에다가 아래 상수함수 두 개도 추가해줄게요.
x값은 "pi/2 부터 a까지" 바뀝니다.
그러면 3x+b는 "3pi/2 +b부터 3a+b까지" 변화합니다.
이때 x의 변화가 아니라 3x+b의 변화에 집중할 겁니다.
이렇게 되는거죠.
b와 a 값이 모두 나올겁니다.
정리해보면,
y=cos(3x+b) 를 그린 채로 x값을 변화시키는 게 아니라,
y=cos t를 그리고, t자리를 3x+b의 변화로 읽어내는 겁니다.
비유를 하자면,
이 그림처럼 'x축' 대신 '(3x+b)축' 으로 바뀐 셈입니다.
3x+b 전체를 하나의 문자로 인식하는거죠.
그 덕에 함수가 y=cos(3x+b)에서 y=cos x로 간단해지는 것이구요.
조금 더 인사이트가 있는 분이라면,
이건 삼각함수 뿐만 아니라 모든 합성함수에 해당되는 얘기라는 걸 알아채실 겁니다.
이 과정을 한 번 더 시각화 한 것이 n축이죠.
다음과 같이 삼각함수에 이차함수가 합성되어 있으면
n축을 쓰든 뭘 하든 대부분 합성함수로 잘 인식을 합니다.
그런데 이렇게 일차함수가 들어가있을 땐 합성함수로 못 보고 당황하는 분들도 있더라구요.
이를 꼭 평행이동으로만 읽어낼 필요는 없습니다. 얘도 근본적으론 합성된 거에요.
삼각함수의 이런 인식에 대해 더 알고 싶은 분은
제가 예전에 썼던 아래 글을 참고해보세요.
(제목 누르면 해당 칼럼으로 넘어갑니다.)
이번 글은 여기까지입니다.
다음에도 좋은 글로 찾아뵙겠습니다.
#무민
0 XDK (+21,010)
-
10,000
-
10
-
10,000
-
1,000
-
4,5칸 표본분석만 조지면 되겠죠 8칸은 그냥 유기하고
-
개인적으로 속독이 고정1의 핵심이라 생각함 국어로 한바탕 했길래 함 써봄
-
연대는 여성스러움 고로 전 상남자식 고대
-
안녕하세요 제가 냥대 논술을 썼는데 최초합 발표때는 예비가 안 떴었는데 갑자기 1차...
-
취업은 어디가 더낫나요?
-
물1 물2는 필요없겠죠??
-
같이 보실 분
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
ㅜ
-
24 수능 쳤는데 감 다시 찾으려면 얼마나 걸릴까요..
-
이거 설명해주실분 ㅜㅜㅜㅜ
-
이대 통합은 공대 포함 대부분 학과 가능한 자유전공이에여 로스쿨 생각 중인데 이대가...
-
1등인데 5칸 주네 등수랑 상관없이 점수도 같이 반영하나..
-
'4선 도전' 정몽규 축구협회장 "소통하는 행정 하겠다" 10
제55대 대한축구협회 회장 선거에서 4선에 도전하는 정몽규 대한축구협회장이 "국민의...
-
자느라 싸움구경다놓침ㅠㅠ
-
둘중에 어디가 더 낫나요? 집은 수원과학대가 더 가깝고 한림성심대는 기숙사...
-
10만 가는구나 캬 6만대에ㅡ사서 10만에 팔기 성공
-
9시 36분 10
칼기상
-
06인데 이번에 재수해요... 수학 선택 미적이엿고 26번까진 너무 무난하게...
-
헬스를 대표하는 매우 친숙한 운동이지만 해보면 빈 바 들기도 처음엔 상당히 어려움
-
영어단어책 마음먹고 다 외워버릴려고 폈는데 의지 얼마못가서 첫페이지부터 한...
-
없음
-
지금까지 있는줄 알았는데..
-
전북대 메디컬 7
추합이 잘 안도는듯함..; 하위메디컬이라그런감..
-
오르비언 분들 1
내일 대학 발표인데 떨어져도 이륙 시켜줍니까… 부탁드립니다 난 오르비 이륙이 꿈이야
-
뭐가다른거지 종합반 -> 장학 x 정규반 -> 바자관 장학 50%? 근데 문제가...
-
새인류로 재탄생.
-
디졌다 3
나중에 대통령돼서 오르비언만 한곳에 모아놓고
-
후후... 아는 사람은 한국에 몇 명 없다
-
화작 124 88 확통 113 66 영어 4 생윤 62 85 사문 61 85 한국사...
-
이대1차충원 2
이대 1차 충원때 혹시 문자 오나요?
-
학생부 종합전형 벽돌 0.9장 기부하고 왔습니다
-
세지 질문 3
원래 탐구 생윤사문 하려했는데 공부한 만큼 안정적으로 점수 나오는 과목을 하나...
-
진학사 마음대로 조작할 수 있으면 함?
-
서강 불변쓰면 0
과탐 3,4들이 냥대가고 1,2들이 서강가는 진귀한 장면 보는건가
-
뭐지 내 눈이 잘못된건가?
-
말하는게 좀 싸함 약간 무서움ㄷㄷ 나만 광기가 느껴지는거임? 학습에 대한 개인적...
-
어디를 우선시 해야할까용
-
성대는 불변일듯 4
같은 라인인 서강대는 애초에 탐구 적게보고 한양대 물변으로 탐구 영향력 제로됐고...
-
낙지 표본 이탈 6
지금 들어오는 사람들 빠지기도 하나요??ㅠㅠㅠ 5칸 끝자락이라 죽고싶네요
-
될까요? ㅜㅜ
-
제일 중요한것같음... 수학,탐구가 완벽하단 가정 하에 수능 3번이상 치면 한번은...
-
물1 화1 지1 셋중에 꿀인거 2개 고를 수 있다
-
오늘은 머리도 식힐겸 공공도서관에서 공부하다가 식힐겸 잠깐 독서하는데 결심했음....
-
오히려 운동이 더 잘 되는듯 같이 열심히 하는 느낌이 남
-
이거 어디까지 되는 점수일지
-
언 미 영 물 지 백분위 95 97 1 90 88
-
확통으로 갈수있는 메디컬 아무곳이나 가면 만족이고 확통 6/9/수 97/99/98 임
-
성적순으로 짜르는건가요 아니면 성적 상관없이 고를 수 있는건가여??
-
코 빨개짐... 루돌프 이즈 히얼
본문애 있는 문제의 답은 41입니다
답이 안 나와서 계속 풀어봤네요 ㅋㅋ 답은 14입니다!
와 이런 오타를 ㅋㅋㅋㅋㅋ
14 맞습니다 ㅋㅋㅋㅋㅋ
속이 뻥..
n축으로 인식해도 되고,
본문처럼 x축 대신 삼각함수 축을 사용해도 되죠.
그런데 증가와 감소를 반복하는 함수의 경우에는 전자 방식이 낫습니다.
후자처럼 인식해봤자 결국 n축과 동일해지기도 하구요.
와..ㅁㅊ
장재원 단위원도 저런 느낌 ㅇㅇ
잘하는 분들은 많이들 이렇게 보시더라구요
ㅆㅅㅌㅊ입니다..
이게 ㄹㅇ 맞음뇨
예전부터 느끼는 거지만
교단에 뜻이 없다면 아까울 정도의 설명력이십니다
[읽기 전]
어차피 y=cos(x)를 확대, 축소하고 평행이동한 그래프이니 본질적으로 y=cos(x)의 그래프와 같다.
만약 주어진 구간의 길이가 너무 크면 실수 전체의 집합에서 f(x)는 최댓값 2, 최솟값 -2를 갖는 상황이니 모순이 발생한다. a가 적당히 ㅠ/2에 가까운 값일 것!
함수 f(x)가 함숫값 1, -루트3을 갖는 상황은 함수 cos(x)가 함숫값 1/2, -루트(3)/2을 갖는 상황과 본질적으로 일치한다.
따라서 방정식 cos(x)=1/2과 방정식 cos(x)=-루트(3)/2의 실근을 조사해보자.
두 가지 경우의 수가 발생한다. 하나는 주어진 구간이 구간 [0, 2ㅠ]에서 정의된 함수 y=cos(x) 입장에서 구간 [ㅠ/3, ㅠ-ㅠ/6]에 대응되는 것이고 다른 하나는 구간 [ㅠ+ㅠ/6, 2ㅠ-ㅠ/3]에 대응되는 것이다.
따라서 x=ㅠ/2일 때의 함수 f(x)를 바라보는 것이 y=ㅠ/3 or y=ㅠ+ㅠ/6일 때의 함수 2cos(y)를 바라보는 것이라 생각하고 계산해주면 후자일 때는 상황을 만족하는 ㅠ 이하의 음이 아닌 실수 b값이 존재하지 않고 전자일 때 b=5ㅠ/6로 결정된다.
이에 따라 x=a일 때 함수 f(x)가 y=ㅠ-ㅠ/6일 때 함수 2cos(y)가 위치해야할 곳이 되는 셈이므로 a=2ㅠ/3
따라서 정답은 5ㅠ^2/9에서 14
[읽은 후]
삼차함수에 일차함수가 합성된 것으로 바라보자는 것~~ 정확히 일치해서 다행이네요
막 몇배 확대축소 평행이동 대칭이동 쌩쇼하기보다 이게 훨씬 편함 합성관점이..
오
무민님 혹시 도형 관련 칼럼도 써주실 수 있을까요...? 뭔가 일관된 도형풀이 체계를 잡으려고 하는데 어렵네요ㅜㅜ
항상 도움 많이 받고 있어요 감사합니다
도형도 써보겠습니다 ㅎㅎ
거리곱 관련 칼럼도 가능하신가영