6평 21번, 심층분석 및 다항함수의 전개
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현강 들으면서 공부하고 싶은데 집에 사정이 좀 안 좋아서... 돈 벌면서...
-
완강까지 8강남았다 헤헤
-
네 0
키스시요까
-
100들어ㅑ더ㅣ나?
-
뀨뀨 5
뀨우
-
무물 아는선에서 답변해드림 공군입시는 잘 모름. 그외에 궁금한거 질문 고고 전역 D-36
-
함수에서 상수구간 껴있는걸로 푸는거 이 문제가 혹시 원조임? 241020도 비슷한 느낌이던데
-
나도 그대학 입학처 취칙해서 개꿀이나 쳐빨고싶네 ㅋㅋ
-
아빠 옆에 계시고 내가 운전면허 따서 운전하는데 아빠가 주유소로 들어가라고 하심....
-
인하대 예비 0
이거붙나요?
-
ㅋㅋㅋ 병신들 4
-
난 단과대 학생회 선배한테 만갤이랑 빡갤하는거 들켜봄
-
오지훈vs이훈식 0
누가 더 좋음? 오지훈 유자분 좀 들어봤는데 올해 다시 들을지 아님 이훈식 들을지...
-
서강대=동국대 0
둘 다 조발 안 하네
-
인하대 컴공 0
예비 26번인데 추합가능할까요? 작년에는 예비54번까지 돌았는데 올해 모집인원이...
-
전담기기 추천좀 5
젤로 발라리안맥스 아스몬 써봤는데 젤로는 맛표현, 밀어주는 힘? 같은게 너무 약하다...
-
스카이뱃 역순이네 그와중에
-
피램 구매 완료 0
2025 버전 싸게 올라와서 당근으로 구매 완료 독서 김승리 문학 피램으로 목표 달성해야지
-
데이트할래? 2
좋아
-
쉬운데 호흡이 긴 문제
-
그런거냐
-
나쁘진 않다는데 어떡하지
-
삼룡이긴 한데.. 증원도 그렇고 해서.. 최악의 상황이면 여기에 갈수도 있어서 물어봐요
-
서강대 뭐해~
-
고대식 650언저리면 18
어디라인임? 서성한이 그쯤되나? 그리고 보통 저점수로 고대 낮과되나요
-
아 야쓰 마렵다;; 12
이렇게 하는 건가요?
-
노짱님 0
???
-
오르비에 종종 보이는 비호감 유형이 있는데 1. 부모님 직업or재력 자랑+이성한테...
-
정신병이 맞던걸까?
-
ㄹㅇㅋㅋ
-
어렸을 땐 잘했으니까 그 모습만 기억하는 친구들은 기대치가 나보다 높아짐. 그게 나한텐 부담이 됨.
-
694 들고 다른 과도 아니고 영문 넣었다가 떨어지고 결국 복학 아니면 다른 과 재...
-
??
-
글 다 밀었다 5
-
무엇도 해줄 수 없는 내 맘 앞에서
-
현역 고3 올라갑니다 수1,수2 분명 작년에 했었고 자이스토리 다 풀정도에 킬러빼면...
-
여장 처음하는데 평가좀 13
24학년도들어와서는 수열문제의 포멧자체가 달라진거같음. 전에는 약간의 논리적 발상이...
-
여긴 패션시티 6
-
어? 10000회독 해보신 분 있나요 ?? 어어?
-
그때가 진짜 황금기였던듯… 칼럼러, 고수들이 넘쳐났던
-
홍익대학교 새내기 where~~~??? 홍익대 합격생을 위한 면맛집 정리!!!!!!!!!!!! [홍대25] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
극악무도한 반역자는 척결이답이다..
-
나만늦는거같아 7
친구들은이제졸업반인데난.
-
올해 신설 모집단위고 진학사 마지막날 4칸이었는데 혹시 추합끄트머리라도 걸릴까요?
-
ㅈㄱㄴ
-
아주대 자전 0
아주대 자전 지원했는데 진학사 점공에서 181명 중에 150등인데 점공계산기 돌리면...
-
다군 인공지능은 예비11번
-
폰겜추천좀요 11
난이도 낮고 좀 가볍게 할만한걸로 포커를 해볼까
-
인하대 합격 2
항우공 드가자~
-
내가 서강대를 뜬다 걍 중대간다 ㅅㅂ
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ