미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한시간을 쳐늦네 10
오면 한 대 때려야겠다
-
어떻게 빠지는지 아시는분? 롯데월드 가기 싫은데
-
김범준t 커리 +한완기로 가려는뎅 미적분은 스블이 12월중순쯤 개강이라길래 ㅜ...
-
그럼 합격한 대학한테 입학금 넣어놓고 자퇴하는건가요???
-
그냥 보편적으로. . 솔직히 나는 평가할 실력도 안되지만
-
수능 ebs연계에대해 어케 생각하심?
-
ㄹㅇ
-
뻥임뇨
-
상식적으로 이과가 수능 수학 1 미만일 수 있음뇨? 7
불가능함뇨
-
안녕하세요. 작년 2023년도 11월경 정지웅 선생님의 강의에 대해 험담한...
-
의료소송은 한국 고유의 전통문화다
-
#~# 0
수능 성적표를 내놓지 않는 평가원은 #~# 같은 집단이다. #~#
-
편의점에서 도수 낮은 맥주 추천좀요 그리고 처음 마시는데 한캔 다 마셔도 되나여
-
스펙 평가좀 5
185 300 120 원세대 국제캠 재학중 수능 평균 3등급 어떰뇨
-
수능치느라 고생하셨고, 남은 입시도 파이팅하세여
-
그냥 피부미용같은거 해
-
확통만 안밀려썼었어도 됏을텐데하…
-
아니 문제는 자연계가 터젔는데 우리가왜..
-
두 학교 다 아직 미정인가요??
-
그냥 놔두면 어차피 죽을사람 살려놓으면 왜 그딴식으로 치료했냐며 돈물어줘야함
-
오늘 애플스토어가서 보고옴 내일 사기로함
-
진학사 보니까 왤케 큰거같지
-
동국대의대면 6
의대 중 어느정도 위치임 지사의? 아님 지거국~지사의 사이? 인식 어때염
-
실제 평가원 등급컷에서도 3합5 4합8 충족할 수 있을까요? 논술이 끝나도 마음이 불편하네요ㅠㅠ
-
흠...
-
여대 이런저런 1
이대가기엔 성적이 부족한데 숙대가 딱 안정으로 나은거같아서 고민인데 또 요즘...
-
1컷 96 2컷 88 3컷 76
-
여쭤봤는데 2등급 블랭크는 쉽지 않아보임 2컷 48은 가능성이 조금 있어보인다 ㅈ됐다 ㅋㅋ
-
의대 순위 2
인하의 가천의 순천향의 서열이 어케됨?
-
미적확통표점차 20점차이나기vs 과탐1컷 30점대초반만들기
-
수능만 ㅈㄴ 봤는데 생각하는 힘이 점점 딸리는것같네요 얘도 이제 역량의 한계? 가...
-
복어크기
-
본인 ,, ,, 재밌게 봤어요.
-
화1 만점표점<<<생윤 2틀표점
-
빈순삽 푸는 스타일 두분 다 비슷하신요? 작년 파데 컬미 주간지있어서 V올인원만...
-
는 성적표 발부 2일전? 하루전에 나오는건가요?
-
10월학평 수학 9
"전국 유일1등" 캬....
-
수능 성적 발표 입갤
-
아파서 집 가는게 왜 이렇게 억울하지 잘하고 싶고 열심히 하자고 마음 먹고...
-
미적:아니 나도 잡혔어 (1컷88에서 더 상승예상)
-
그런데 보고오니 생지 컷이 40초중반인것이에요. . . 보자마자 눈물이 났어요
-
게임 속으로 들어가고 싶어
-
아침에 7시 10분 고사장 도착 목표로 생각하고 집에서 6시 45분에 나옴 엄마가...
-
넓죽넓죽은 [넙쭝넙쭉]으로 발음이 된다고 하는데 된소리 되기 후 자음군단순화 된...
-
대대상근 등장 28
그래도 출퇴근이잖아 한잔해~
-
이런 통계가 있고 저런 통계가 있어서 이렇게 저렇게 하면 92 입니다! <<<욕...
-
독하다 독해
-
집 가서 아예 쉴 건 아니고 국어 몇지문이랑 수학 뭐뭐 할거는 가져가서 쉬면서 할...
-
평소에 정시 진짜 잘하는걸로 이름날리거나 수시로 10등권에 있던 애들 : 1틀 2틀...
-
이모네 댁 가서 5일동안 뭐한다고 쓸까요 어떻게든 꽉꽉 채워야 하는데 ㅠㅠ
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..