231122 수식풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
확실히 감이라는게 생김 18
그래서 먹엇음
-
나도 재수하는 입장이라 뭐라 말은 못하갰지만 친구가 수시정시 도합9광탈인데...
-
구라입니다. 감사합니다.
-
생1 하나도 몰라서 킬러가 어떤식으로, 얼마나 어려운지 모르겠는데 주변친구들...
-
물 화 하는 입장에서 생명 시험지보면 이걸 30분 안에 풀라고?? 하는 생각밖에...
-
확통 노베라 한완수 하는데 처음부터 진짜 너무 어렵네 이해하는데 개빡센거 같다...
-
요즘 담배 개말린다 11
다시 피고 싶다 진심 애초에 담배 끊은 것도 걔가 싫어해서 끊었던거라 이젠 참을...
-
ㅁㅌㅊ.. 미칠거같아요
-
어디가 낫나요 삼반수 할 수도 있기는 해서 학비가 싼 시립대가 ㄱㅊ을것 같긴한데...
-
손목을 서로 맞대서 비비고 냄새 맞으면 체취라네요 저는 우유 냄새 나요
-
정시하는 예비 고2 입니다! 고1 영어는 3모만 1 뜨고 그 후로는 쭉 높2->...
-
어떤가요?
-
김승리 독서 들을건데 지금 오리진부터 시작하면 넘 늦을 것 같아서 바로 올오카로...
-
특히 221116은 정말이지.. 수능 역사에서 전설로 남을 문제중 하나라고...
-
맞팔 9함 7
-
마지막 모의고사가 4-5등급 나왔고.. 짱중요한유형 수1수2 확통이랑 어삼쉬사...
-
수학 하다가 너무 안되서 멍청한 내 자신이 너무 혐오스러웠음 12월 초부터 멘탈...
-
간만에 알찼다
-
질량이 음수로 나와서 섬찟하다가 3년전 생2 20번을 떠올리고는 안심해서 질량을 음수로 놓고 품
-
마더텅vs 쎈 1
이제 예비고2되는 학생입니다! 수1 개념끝내고 다른 문제집n회독 할려고 하는데...
-
엄마가 사촌동생 주랴고 치킨너겟 데우고 있는데 냉장고엔 내가 사놓은 연세빵이...
-
물리를 잘하는 친구는 있었지만, 그 친구는 잘 씻고 다녔음 한번 물스퍼거 구경하고 싶구나
-
돌연변이 필수로 해야되나여? 킬러라고 듣긴해서
-
수특 굳이 사야함? 11
이비에스에서 pdf 뿌리지 않나
-
06들아 잘부탁해
-
허락받을수만 있다면 ㄱㅊ은데 허락안해주면 탈출하고싶을거같아
-
생각난당
-
푸는데 15분 알아듣게 쓰는데 10분은 걸리겠구나…
-
ㄹㅇ 유전 문제는 너무 힘들었음 한번만 스탭 잘못밟으면 구렁텅이로 빠지는 느낌이었음
-
님들같으면 머고름?
-
불닭발에 주먹밥을 챱챱 10
야식이 너무나도 땡기는 밤이구나..
-
메디컬이 목표였어요. 수능 당일날 국어 삐끗해서 41122 받았어요 메디컬애 너무...
-
물 넣고 끓이면 무한복제 쌉가능 씹가성비
-
뉴런은 작년에 봤어서 올해는 스블로 시작할려했는데 스블 강의 업로드가 느리기도하고...
-
90 아래로 내려간적도 있나
-
입원하긴 시룬데 0
증상말하면 입원하라할거같음.. 싫은데
-
금연 4일차 3
힘드누
-
큐브 계정 아이디랑 비밀번호 쪽지로 보내주세요.
-
잘안되네 걍 피해안끼치고 사라지고싶음
-
그만 제발 그만!!
-
거의 3달 놀았더니 수학 문제 푸는 감이 사라졌음 기출부터 다시 돌려야지,,
-
ㅈㄱㄴ…
-
SBS까지도 오요안나 캐스터 사건 언급하는 거 보면 찻잔속 태풍은 애초에 지났네요. 1
KBS가 먼저 뉴스로 언급한 상황에서 어떻게 흘러갈까 궁금했는데 SBS까지도 사실상...
-
소셜계정은 비밀번호 자체가 없는거임?
-
고대 합격포기 5
고대 국문과 최초합했는데 의대가 목표라 다시하고싶은데 입학포기하고...
-
수특 오류ㅋㅋ 10
sin ACB값이 1보다 큼ㅋㅋ
-
만일 컴퓨터공학과 계열이랑 기계공학과 계열은 나중에 진학 후 문제가 생기는 게...
간?결
그냥 그래프 그릴게요
님 ㄹㅇ 정병훈인가
근데 글씨 ㄹㅇ 개꼴
님아.
헉.. 저는 포기하고 우진희 해설강의 들었는데
직접쓰면서따라해보면 더잘이해돼요
간?결
ㅜㅜ
ㅁㅊ..
스탠퍼드 수학과가 당신을 원할 겁니다
판별식 D1, D2 쓰는 이유를 모르겠습니다
질문의 의도가 헷갈리는데요, 혹시 판별식이 등장하는 논리가 순수하게 이해가 안되신다는 건가요, 아님 그 과정이 불필요하다고 말씀하시는 건가요?
전자라면 d1을 통해 근이 판별되는 방정식이 항상 허근을 갖지 않아야 g(x)가 실수의 값을 갖고, d2를 통해 근이 판별되는 방정식이 항상 허근을 가져야 모든 실수에서 음이 아니기 때문입니다
그런데 혹시 후자일 수도 있을 것 같아서 곰곰히 생각을 해 봤는데요, 풀이를 보완해야 할 것 같아요
왜냐하면 "어떤 x에 대해 복소수 값을 갖는 함수 g(x)의 연속성"은 (아마도)교과범위 내에서 논할 수가 없고, 필요한 건 단지 g(x)가 연속이라는 사실 뿐인데, 그건 "우연이든 아니든 판별식을 통해 확인해 보니 g(x)가 항상 실수의 값을 갖고, 그러므로 연속성을 확인할 수 있으며 실제로 연속이다" 정도의 논증으로 충분하니까요
위의 풀이는 g(x)가 연속이려면 모든 실수 x에 대해 g(x)가 실수의 값을 가져야 한다는 전제 하에 논리를 전개한 건데, 이건 명백히 오류죠
실수의 값을 가지면 연속성을 논할 수 있는 거지, 연속이면 실수의 값을 가져야 함은 아니니까요
의도였든 아니든 지적 감사드립니다
정말 중요한 지적이네요
윗댓 보충인데,,
교과서를 보니 복소수로 정의되는건 아예 정의가 안된다고 보는군요
그러면 판별식이 필연적인게 맞는거네요