심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
응응
-
화혁 안다고 옯틀딱이라고 하는 건 너무한 거 같아요 7
그 정도는 틀딱이 아니라고 생각해오
-
증명사진 풀버전은 보여주고 탈릅해야됨...
-
1. 화혁이라는 인물은 2024년 초-중-후반에 활발하게 활동하던 오르비언이었다....
-
이건 무슨일임뇨?
-
미적분 극복법 12
방학동안 미적 개념 정말 열심히 돌렸는데 킬러가 진짜 너무 안풀려요ㅠㅠ 혹시 다들...
-
ㅎㅎ이 누군데 0
어어.. 그냥 자야지 몰라
-
1. 드릴 드릴드 차이가 뭐임? 2. 드릴은 올해 언제쯤 나옴? 3. 드릴드1,...
-
카나토미 어때여?
-
패드에 깔았다가 올리고 바로 지워야갰다
-
나만 메타 못따라가나
-
화혁이었어? 0
랜만오네 ㅋㅋ
-
제가 생1 지1 선택했는데, 추후에 물리가 필요한가요? 화학은 조금 필요한 걸로...
-
ㄹㅇ 어디에 넣든 맛있네
-
기시감이랑 림잇 사서 림잇부터 보고 있는데 생윤에 개념추가현상이 있어요?? 그...
-
3모 전까지 생윤 돌리려는데 이거사면 되나?
-
설명좀해줘봐
-
진짜 중요한 건 바로 노무현은 살아있다는거임.
-
거리 비슷 러셀이 현강가긴 편함 러셀의 담임,우드톤 책상(화이트톤이 더...
-
방귀를 자주 뀝니다 yes 축하드려요 당신은 똥마려운 인간입니다 이거라고 생각함...
-
어….
-
로스트 아크 레어 누구 사실분
-
명곡 2
-
젭알
-
ㅋㅋㅋㅋ 아니 얼마전에 저거 생각나서 쓰려고 갔더니 이미 썼네 뭐 어이가 없네요 이건
-
ㄹㅇ
-
로고스 논술 반 0
3월부터 로고스 논술 가려하는데 연대집중, 연서성, 기본 반 난이도?차이 많이...
-
틀딱 ㅇㅈ 6
건강검진 편지 날라옴 ㅋㅋ
-
ㅤ
-
기평 ㅋㅋㅋ
-
이거 칠때만 해도 난 내가 국어의 신인줄 알았지..
-
영어 현강은 아까울까요,,? 지금부터 준비 해야겠죠,,? (2등급 중반임)
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요