심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사유 : 내일 던파를 일찍 하기위해
-
ㅋㅋㅋㅋㅋㅋㅋ
-
60키로때 ㅇㅈ 8
-
야이3끼야 ㅋㅋ
-
야뎁에 대해서 오래전부터 들었던 생각 (의견 개진 ㄱㄱ) 4
대학생들 중 컨팀에 소속되거나 혹은 갓 대학 졸업하고 컨팀에서 활동하시는 분들...
-
제 얼굴입니다 저는 당당하게 제 상반신을 프사로 걸어놓았습니다 근데 8티어라니 너무...
-
아니 근데 4
빠따 든 야구선수를 어케 이김뇨
-
귀엽다는 말 달림 내 인증에 가장많이달린말이었음
-
물소 왜 욕 먹음
-
이래서 다들 시절인연이다 이러나... 전공도 전적대랑 완전히 다른 쪽으로 가게 돼서...
-
안녕하세요. 6평 9평에도 수특 문학과 화작 언매가 연계되는걸로 알고 있는데...
-
1초인증 24
아무더못봣겟지
-
화낼만해서 미용사랑 싸우고있는데 화내면서도 기분 개안좋음 화내는것도 에너지다 ..
-
. 6
-
아 ㅅㅂ 2
급발진해 버렸다
-
너네까지 쪽지보내면 내 쪽지가 묻히잖아 나만 물소짓하게 좀 나가봐
-
저두 했는데!!
-
마술이랑 방송 존나 잘할거 같다
-
3분제한걸렸다 0
빨리 좋아요 눌러
-
이해를 하면서 읽으려고 이미지화 해가면서 읽어가는데 결국 끝까지 읽고나서는 내용이...
-
외화유출범 ㅇㅈ 5
내 돈 돌려줘ㅓㅓㅓㅓ
-
라고 생각해서 봤더니 나도 안 넣었음 납득.
-
얼굴형 타고나면 이목구비 평타여도 특유의 분위기가 있는듯 .. 이목구비가 운석 맞은...
-
ㅇㅇ?
-
다 나눠주고 원하는거 응시하는건가요?? 3모6모 다르게 응시해도 되는건가요???
-
여미새는 머임 1
어디 사는 동물임
-
찌질한걸까
-
음 피부가 엉망이야
-
.
-
개수 세나요 이거?
-
일하기 싫어...
-
내 ㅇㅈ에 이 옯티콘을 달아야 속이 시원했냐고!!!
-
레몬은 동물이다
-
레어확인용 3
섹스
-
아 물론 상권이 ㅋㅋㅋ
-
인생 조언좀 해주세요 10
제가 1년 반 전쯤에 흑역사가 있었는데 그때 꽤 큰 사건이어서 학교에서도 다 소문...
-
밐냥이 0
커여웡
-
수능이 됐던 뭐가 됐던 입시판 빨리 탈출 ㄱㄱ혓!
-
미적분 뉴런 3
제가 알기론 미적분이 딥해서 뉴런 다음에도 엔제나 실모 벅벅 안 하고 뭐 더...
-
할 얘기가 없는데 공부얘기 하기 싫어서 다른 얘기하면 쓸데없는 소리 하지 말라고 하셔서
-
나 근데 여자도 아님
-
얼굴깐거 딱1번(나꼴릴때) 여장인증 종종(나꼴릴때) 했는데 메타 안 탈 때만...
-
큐브 재밋음 4
최저도 안 나오지만 그냥 오르비하는거보단 큐브내리면서 오르비하면 뭔가 활동적이게된느낌?
-
잘 할수잇을랑가 모르겠네
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요