심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심심한아~~~ 7
공부해라
-
ㅂㅂ
-
오옹 3
뭉탱이
-
반전에 대해 배워봅시다ㅏ.1. Cline. 일반화된 원이라고도 부르고, 원과 직선을...
-
렉카들 앞으로는 좀 사리려나
-
살면서 번호 따여본적없는데 클럽 가니 2번 따임
-
공부 할 체력이 안됨 19
2시간 반이 하루 최대치다 더 이상은 하다가 쓰러짐
-
애교를 부려야겠다~~! 누나들 아잉아잉 ♡♡ 안냐세여~~!!
-
무물보 5
-
작년 수학 10모 12
실모랑 하프모같은 컨텐츠 많이 풀어봤고 고2때 학평 다 96~100 원점수 고정으로...
-
많이 써놓던데
-
중세국어 시기에는 '얼굴'이 'face'가 아니라 'appearance'의 의미로 쓰였답니다 4
形 얼굴 혀ᇰ 훈몽자회(1527) 模 얼굴 모 훈몽자회(1527) 體 얼굴 톄...
-
도와줘ㅓ 1
작년에 강민철 풀커리 타고 2등급 나옴 근데 문학은 다 맞고 독서는 꽤많이 틀ㄹㅣㅁ...
-
한의대도 학벌 중요함? 10
경희 한의원 가천 한의원 동국 한의원 원광 한의원 이런게 의미있나
-
국어 큰일났다 6
24학년도 엑셀 비문학 어려운 거 맞죠? 아닌가..
-
진짜 다른거없이 얼굴만 보고 번따하고싶단 생각은 안 들던데
-
우와!!! 1
나 처음으로 비갤에선 언급당해봄!!!!
-
바로 N제 구매했습니다
-
막 해피 중앙 피부과 이러고 병원해야되는거야?
-
성형 2
작약탄
-
나도 정병 있음 0
정병(호) 키링 있음
-
탈출 마렵 4
-
학교에 대한 기억이 얼마 다녀보지도 않은 고등학교 시절에 멈춰있어서 하루 예닐곱...
-
성형 2
성동생 성적인 형 성적인 동생 감사합니다
-
근데 윤곽은 너무 무서워
-
이빨 교정 참 무섭네요 20
근데 이거 수년간 해야한다는데 이거 진짜에요?
-
환율 하…
-
대성패스 1
대성패스 오늘 안사고 3월정도에 사려는데 가격 오를까?
-
뉴런 3
작수 확통 원점수 84점, 백분위 89로 딱 2컷입니다 (15 20 21 22 틀,...
-
외모정병메타임? 1
음
-
진짜 급함진짜 급함진짜 급함진짜 급함진짜 급함진짜 급함진짜 급함진짜 급함진짜...
-
시발점 90분짜리 듣는데 눈이 감겼다가 떠졌는데 강의 시간 15분에서 70분 돼있네요 ㅋㅋ..
-
근데 부럽긴해
-
난 거울보면 3
눈을 감고 입술 내민뒤 거울로 얼굴을 갖다댐
-
외모정병 3
주기적으로 오는 듯... 쿨타임 슬슬 끝나가는데..
-
안보이니깐 다 해도 되나요
-
인강 풀커리 1
겨울방학동안 강기본 듣고 강기분까지 들어 이번주에 강기분이 끝나서 복습중입니다...
-
집 0
보내줘 제발
-
국밥먹는데 립밤 녹여서 쳐먹는거 같네 아오 내 9000원!!
-
하 재수기숙 들어온 지 8일밖에 안 됐는데 걍 공부하는 거는 괜찮은데 심리적으로...
-
연치 안갔는데 의사는 데뷔가 늦잖아요 시발 어쩌라구요 ㅅㅂ공부라도 잘하래서 열심히...
-
수탐 그래도 좀 하면 할만한가요? 국어처럼 재능 타요?
-
머리 찰랑거릴 때마다 냄새 개조아
-
ㅇㅈ 10
얘 왜이럼뇨
-
에바다이거ㄹㅇ
-
걍 1헉기는 17로 함
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요