베르테르 77제 2번
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
간단한 미적분 문제 12
짤이 너무 산화되서 제가 다시 타이핑해서 만들었음
-
아직 못 먹어봄
-
고맙습니다 4
아이스티, 쮸솔, 무한입시님 께 보내드렸읍니다 인데 팔취 누구야
-
휴릅합니다 9
3모랑 3덮치고 올게요 공스타 내일부턴 진짜진짜진짜 올릴게요 팔로우해주세요 dpluskiawin25
-
대치동 카르텔 척결을 제대로했음 대치동에서 이제 국어는 뭐 비문학 리트가 중요하다...
-
킬러 문항 배제 2
하기 전이 수학은 더 쉬웠던거 같음 삼도극 없어진 이후로 28번이 더 까다로워진거...
-
하.
-
사탐만점 = 과탐1컷 이라고 봐도됨? 만점백분위 99이상일때
-
니없어도 어차피 잘먹고 잘삼
-
스크랩만 하고 정작 지원을 안 함
-
선착순 팔로우해주는 3명 1000덕
-
화력좀보자
-
한걸음 뒤에서 보면 그냥 개소리같은데..
-
인증절대안함 2
도용한번 당해보면..
-
엄
-
ㄹㅈㄷㄱㅁ<-이거 오히려 못생긴놈들한테 하는말임 사실 12
사실 레전드괴물임
-
교과외임 ㅅㅂ 석열이는 그런 걸 킬러라고 했어야지 ㅉㅉ
-
님들도 제 얼굴 보면 기분 안 좋으실듯
-
휴
-
자괴감 든다 ㄹㅇ.....
-
새내기 시간표 ㅁㅌㅊ? 10
-
빨리 인증해라 0
빨리
-
렌즈뺌 0
이제잘수있어세상에
-
하 4
머리 ㅈㄴ 앛프다 두통 개쩡ㅁ 왜이러지…0
-
난 클린유저야 8
여기빼곤 욕 거의 안해
-
인정 1
해주세요
-
약간 수열문제 비슷한 느낌인듯? 그래서 더 어려운거같고 비율관계같은 스킬 전혀 안쓰이고
-
레어 사. 6
흑화할께
-
개인적인 의견 7
오르비가 순간 스레드로 바뀌어 있었다.
-
키 184 ㅇㅈ 12
신검은 183.5 최근에 낮에 병원가서 잰키 184.0
-
현질 100만원 넘게함
-
교육청:비가오나 눈이오나 바람이부나 정상등교하세요~~ 병무청: 이 정도면 멀쩡한데?...
-
어떻게해야할지 알려주세요 ㅜㅜ
-
오르비의 순기능 6
잘자ㅇ ㅛ
-
嘆き 0
自由は次々死んでいく 受験生の声が風になる 浮き立つ群れのアエない男...
-
아
-
잘하는게 없어요 4
(진짜임)
-
이쁜데 모솔처녀 사람들 은근히 많다던데
-
넘어질뻔함 1
클날뻔
-
2박 3일로 여행 갈 곳 추천해주세요!!! (이미 여러 번 갔다 온 경주, 대구,...
-
오랜만의 과잠 5
이 서늘한 감각 좋군
-
얼굴은 좆같이 생겨서 도저히 깔 수가 없네요
-
기습 ㅇㅈ 7
-
QED.
-
그러니 너희가 좀 대신 해봐
-
반박시 은테 동테 파테 무테.
-
세상에는 재밌는 사람이 이빠이 존재함
-
뭐부터 공부해야함?
으악 싫어
끄아아악
님도 레츠고우
우왓
호우
진짜 베르테르 모든문제 다 풀고나니깐 기벡때 눈이 틔였었는데..
진짜 신인가..
https://orbi.kr/00071055832/%EB%B2%A0%EB%A5%B4%ED%85%8C%EB%A5%B4-%EB%AA%A8%EC%9D%98%EA%B3%A0%EC%82%AC(%EC%9A%94%EC%A6%98%EC%9D%80-%EB%AA%BB%EA%B5%AC%ED%95%A8)
베르테르 모의고사도 풀어보세요 (제가 올린건 아닙니다)
일단 제한시간이 130분이라는거부터 심상치 않네요 ㅋㅋ
저 기하 베이비이기 때매
n제부터 차근차근 하겟습니다
꼭 풀게요 감사합니다
뿡댕이님..이거 공벡풀이가 그냥 두개 직선 방정식 세워서 두 평면잡고 외적하고 거리공식맞나요..?
으악 내눈
님도하샘
풀다 때려치움
바보 바보바보 바보바보
힌트입니까...?
아 좌표푸리
잘랬는데
이거 어캐푸러요 좌표 안잡고
수직수직 열심히 이용하시면되요
두 직선사이의 거리가 둘다 수직일때니까
좌표푸리 절대안하고 풀겟습니다 오케이
12맞나여.. 근데 아무리봐도 공간벡터 안쓰면 너무 어려움
네 맞아요..
혹시 푸리 공유 가능하신가요
저 공간벡터를 썻습니다
지금 '기하' 의 지식으로 베르테르를 푸는건 좀 무리인 것 같아서 저는 비추드리겠읍니다
혹시 좌표풀이인가요? 평면방정식 세워 푸는건 할 수 잇겟는데 공간벡터를 어캐 활용하는지가 궁금하네요
글고 어차피 저는 수능볼 것두 아니고 취미로 하는걸라 갠찮아요
아놬ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
우선 좌표축을 써서 RS'과 PS의 벡터를 잡아봤구요
RS'벡터와 수직인 벡터는 (A,0,B)가 되어야하고
그러면 y의 구성요소가 0이 되면서 PS와 수직인 벡터는 (-1,0, sqrt3) 이 되어야해요
근데 그냥 평면 alpha 위에서 마침
P'S'의 중점이자 RQ의 중점인 점을 M이라고 할 때
RM의 길이가 루트3, M에서 직선 PS까지 위로 수직으로 올라간 길이가 3이 되면서
문제에서 거리를 묻는 두 직선에 수직이라는 조건을 만족합니다
그 두 직선에 수직인 선분의 길이를 재보면 루트12가 나와요
와우....대단한 직관인데요
저는 방정식 다 세워서 푸는 풀인줄 알았는데
차원이 다르네요