이 문제 보기는 쉬워보여도
실제 6평 22번에 이거뜨면 정답률 많이 낮을듯
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
체례상 3
요즘 물가가 많이 비싸진듯
-
남자 미필 삼수 3
어떻게 생각함 현역 평백 54>재수 84까진 올렸는데 아쉬움이 남네 학고나 이학기...
-
얼버기 0
4시간반정도 자니 하품ㅈㄴ해 나도 늙었나봐
-
지금 성대 공학계열이랑 한양대 산공, 경찰대 붙었는데 어느곳으로 가는게...
-
해야됨ㅁㅁ?
-
누룽지닭죽 빈츠 어케 참음
-
이거 머임 0
ค็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็...
-
덕코인 주면 덕담해줌 19
네
-
물2 ebs 0
현역 물2 ebs만으로 가능하다 보십니까 힘들어요 ㅠㅠ
-
하버드가서 미국 대통령 될빠에 붓산대 댕긴다 내같으면 아이고 가시나야 . . . 붓싼대가 최고지 마
-
잘 시간아에오
-
삼반수 0
2월이랑 학교 다니면서 공부 간간히 할 거고 5월 후반이나 6월 초부터 공부...
-
마 새끼 행님 마 제 기억나시죠 매형 마 내가 잘 될거라 했다 아임니까 마 아구...
-
그런 실화없나
-
얼버기 3
즐거운 설명절 보내세요~
-
경제적 여력때문에 대성,메가,이투스 같은 인강사이트는 못 들을 거 같습니다 개념은...
-
결국엔 일곱시군 1
...제사지내고 자야겟네
-
떡국 먹었음뇨 2
저 이제 74살임뇨
-
얼버기 1
-
만약에 100명이 2배수로 들어왔는데 99명은 다 aa나왔고 과탐가산점 없음 나만...
-
1황
-
자려 했는데 5판이나 했음뇨 어릴 때 주판으로 놀았던 게 도움이 되는 것 같기도..
-
나도 자러감 6
12시 전에는 일어날게 응
-
진짜잘게요 6
바이바이
-
유설, 장카로 나눠야 한다고 봄
-
워딩이 헷갈리잖아 인정하죠
-
오늘은 더 안풀어야지
-
이거 때문에 생활패턴 망햇어 세안하기 귀찮단말야..
-
얼버?기? 3
-
역시 선택을 잘햇어
-
하이머딩거가 된거같애
-
"경대의대가서 뭐할라꼬 거까지 가노 마. . . 가까운 붓싼대 가서 마 니...
-
제자야 일어나라 9
넵.
-
자야겟다 7
뇌가 쪼그라들고잇어..
-
전형을 건드리는 게 아니라 학사제도 개편으로 해도 되지 않았나 싶은 1학기...
-
전에 올린건데 2
펑
-
설명절 끝 1
집으로 복귀
-
심연이더라 난 빡갤이 뭔지 몰랐는데 한석원이 빡빡이라서 한석원갤이 빡갤이라는거임...
-
뇌가 이상항가 12
직선과 평면사이 거리가 최단거리란게 잇을 수가 잇나 그냥 직선이랑 평면이랑...
-
수능날 뭉개질짓 하는중 10
미적 뭉개면서 풀기 ㅁㄴㅇ?
-
새르비 노잼됐어 2
가야겠다 이제 할짓도없는데 수특이나벅벅.. 저능해졌긴 한가봄 스텝3가안풀리는걸보아하니......
-
아니 저 날벌레 색기 10
내가 아까 라이트 훅으로 눕혓는드ㅔ 언제 인낫냐 죽은거 아니엿냐
-
개 버러지 집중력이야
-
요즘 볼게없네 추천좀 19
일본애니안받음 심슨 숏츠로뜨는거보니까 좀 흥미생기는데 그거하나보자고 디즈니플러스...
-
베르테르 14번 푸리 12
3점인 ㅇ이유가 있네
-
섹스 12
아 입구컷이네 너무해….
-
2트 14
몬가 오르는데, 각 잡고 해볼까 ㅋㅋ
난 경우가 한 8가진가 나왔는데
싫어
ㅋㅋㅋㅋㅋ
"객관식"
보기빼면
그럼 좀 낮아질듯뇨
수열 시러
수열 조아
근데 이게 22번이면 개꿀~하면서 받음
막상 풀면 생각보다 까다로운듯
보기엔 쉬워보이는데
이 사단 났는데 내가 너무 어렵게푼건가
무슨 챡이에요..?
이해원 n제 수1이용
아 작년거군요?
와 저도 의심하면서 마지막도전으로 저렇게 풀고잇엇는데…
6모에 나오면 수능에안나와서정말다행일거같아요….. 완전 멘탈 갈릴듯….
와 이제야 수형도 다 그렷는데 7가지중에서 6개는 또 어떻게 골라내는거지 와……………….
집에서 여유럽게 푸는데도 멘탈이 갈리네 모고에 나오면 이 여파로 탐구까지 다 망할듯
시간없어서 저문제 읽지도못한 사람이 승자네
이 문제 악질인게 생긴게 너무 쉽게 생김
ㅋㅋㅋㅋ
현실은 공차 경우의수 추론과정이 상당히 길어서 주관식으로 뜨면 자살 말릴듯
답지도 이렇게 풀어요….? 이러면 3페이지 걸릴거같은데
엄청 어렵지는 않아보이는데 의외로 까다롭나보네
a2=a1+2b1은 a2≥9, a4가 무슨 짓을 해도 2까지 떨어질 수 없어서 걸러지고, a2=a1-b1이 확정된 상태에서 a3=a2+2b2의 경우 a4까지 식이 확정되고 모순이 생겨 걸러짐. 실질적으로 꼼꼼히 따져야 하는 경우의 수는 a3=a2-b2에서 나누어지는 2개의 경우뿐임
불필요한 가지뻗기가 너무 많음
저는 그런 고능풀이가 안됩니다 ㅠㅠ
가지가 너무 야랄맞게 뻗는다면 진짜 이 가지가 끝까지 뻗을 필요가 있는지 의심해볼 필요가 있음
범위체크를 미리미리해야하는군요
추가로, 어차피 a5 이후부턴 a(n+1)=an-bn의 식을 따라갈 걸 안다면 굳이 b를 하나하나 더할 이유가 없음. 그냥 b5~b10까지 합 구하고 a5에서 한꺼번에 빼주고 말지
오 좋은 풀이 ㄱㅅ합니당
확실히 그런 습관을 안들이니까 고생하는거같아요
이 순간을 기점으로
가지 너무 많이 뻗으면 의심하기
너무 멀리 있는 값을 구해야 한다면 수열이 일정 주기로 반복되거나, 특정한 패턴이 있지는 않은지 의심하기
고능풀이 ㄷㄷ