유명한 문제 (5000덕)
a_i= 1 or -1이고,
a_1*a_2+a_2*a_3+...+a_n*a_1=0이다.
n이 4의 배수임을 증명하여라
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 마닳 마더텅 매삼비 등등 기출 일절 풀어본 적 없습니다 제가 조금 재능충의...
-
인증 합니노 25
부끄럽읍니다
-
다이어트 ㅇㅈ 26
이정도면 복권 5등은 됨?
-
오르비 안녕히주무세요 11
눈도 아프네요 그럼 이만
-
미방 감사합니다.
-
인증 재밌노 ㅇㅈ 24
이름모를 푸키먼 이마에 박제했는데 ㅅㅌㅊ?
-
다시 인증해봅니다 25
얼굴 절대 사수(수능 사수 아님 ㅎ)해피부만 보정해보았읍니다 늦은사람은 이재명이나 보고가
-
증사 23
원본까지는 아니고 특정될까봐 좀 그래서 대충 저 느낌임요
-
어떻게 벌점이 900점 ㅋㅋㅋㅋ
-
진학사 질문 3
누가봐도 1,2지망은 택도 없이 불합일거 같은데 3지망은 점수 많이 남기고 붙는거면 무슨 심리인가요
-
좀 더 늘어나야함
-
맞팔할ㅅㄹ 14
-
음~ 19
-
제 mbti 맞춰보셈 10
1인 1회참여 ㄱㄴ 맞추면 만덕
-
나는 고정1이 절평뿐임 11
어 그래그래 형은 영어 말고는 잘하는 게 없어
-
저거 했으면 지금쯤 연습실에서 조뺑이 치고있었을듯
-
씹덕프사할 때마다 4명은 빠지던데ㅋㅋ
수논러지만 하기 싫어
무량공처 맞기 싫으면 빨리 4의 배수 맞다고 해라....
한번뿐인 기회를 날렸군
_
_
따라서 n은 4의 배수이다.
근데 *가 아니라 + 아님? 1과 -1을 곱하면 1 또는 -1인데
곱하기임미다
아 중간에 + 있구나
실모나 풀고와라.
그게 뭐지요
수능을 하란말이야
웩
근데 귀류법 쓰면 금방 풀리긴 할 것 같은데
넘모어려워..
이거눈 할만한디
지금까지 맞기만해서
도전하기 두렵다
bi = ai*ai+1로 놓고 짝수인 경우 4k-2랑 4k로 나누면 될 거 같은데
4n-1, 4n-3은 당연히 안됨.
4n-2만 보면 되는데, ++이 연속으로 나오거나 - -가 연속으로 나와서 1인 경우는 동형, -+이나 +-가 연속으로 나와서 -1인 경우는 이형이라고 하면, 동형항과 이형항의 개수가 같아야 함. 이때 이형항이 홀수개인데, 그러면 a1이 같아질 수 없음. 부호가 짝수번 변해야 a1의 부호가 일정함…
맞나요…?
히히 덕코 감사합니당
n이 짝수인건 너무 자명함
a_(n+1)=a1이라 하고, bn=ana(n+1)이라 하자.
b_n은 무조건 -1 또는 1임.
b_1+b_2+...b_n=0이니까 b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같음.
b_1부터 b_n까지 죄다 곱하면 (a_1a_2...a_n)^2인데 a_n이 -1이든 1이든 제곱하면 1이니 b_n까지 곱한 값은 무조건 1임.
b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같다고 했는데 b_1부터 b_n까지 -1의 개수가 홀수개일 경우 곱은 -1이니 말 안됨.
따라서 b_1, b_2, ...b_n 중 -1은 짝수개이고, 1도 짝수개.
같은 짝수를 두번 더하면 4배수가 되고, n은 b_1, b_2...b_n 중 -1의 개수랑 1의 개수를 더한 값이므로 n은 4배수.
이걸 응용헤서 모고에다가 넣어도 되겠죠..
아아주 유명한 문제입니다 ㅋㅋ
마침 수1 등비수열,귀납적 문제가 필요헸어요 ㅋㅋ
원래 풀이도 올려놧는데 한 번 구경해보세요.
그러고보니 999890님이랑 사실상 똑같이 풀었네요