(뇌아픔 주의)역함수에 관한 고찰
출처 ) 2025 지인선 N제 7회차 22번
(가)조건을 봤을 때 어떤 식으로 해석을 해야 할까요?
아마 많은 학생들은 가 조건을 보고 아래와 같은 사고과정을 거쳤을것입니다
언뜻 보면 타당해 보입니다
하지만 역함수의 정의를 엄밀하게 생각해보면
우리는 g(x)가 '연속함수'라는것만 알지 다른 조건에 대해선 무지합니다
다시 말해 이 친구는 무한한 가능성을 가졌다는 겁니다
다항함수가 역함수를 가지려면 항상 증가/감소 해야 한다는 것은 자명합니다
그럼 증가했다가 감소했다가 증가하는 함수는 왜 안되는데요?
하나의 정의역에 대해 두개이상의 치역이 생기기 때문입니다
예를들어 f(1) = 1,2,3... 이런식으로 말이죠
하지만 그 치역중에 하나를 선택할수 있다면?
f(g(x))=x 지만 g(x)는 역함수가 아닌 함수가 탄생 한다는 것 입니다
예를들어 볼까요
이함수의 y=x 대칭 함수는
이렇게 생겼습니다
여기서 치역을 골라서 간다면?
이런 함수가 있을수 있겠죠
이렇게 된다면 이함수를 g(x)라 했을때
f(g(x)) = x 를 만족한다는 것입니다
즉 이 문제에서의 증가 감소조건은 사실 없는조건입니다
그러면 (가)조건을 어떻게 해석했어야 하나?
y=x의 한점에서 치역에 대응되는 f(x)의 x좌표가 g(x)+f(2) 인것입니다
이는 또다시 거리관점으로 해석가능한데
x=f(2) 축을 그리고
위에서와 같이 치역에 대응되는 x좌표까지의 거리가 g(x)라고 볼 수 있습니다
y=0 에서 대응되는 점이 두개니까 g(0)의 후보군은 두명이지만
g(x)가 연속이라는 조건을 준점을 통해
멀리있는 쪽이 g(0)으로 확정된다는 것을 알수있죠
재밌지 않나요
이글 이륙하면 해설까지 이어서 써볼게용
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
석열아 햄이 컨닝페이퍼 던져줬다ㅋㅋ
-
나는 이제 대한민국 제21대 대통령 이재명을 받아들일 준비가 됐다 0
그리고 해외대학원 가서 탈조선이나 해야지
-
단타 낭낭하다 1
슛ㅋㅋ
-
현재의 법체계는 3·1운동, 6.25. 4.19, 5.18, 6월 민주항쟁을 거쳐...
-
farewell
-
인스타 계정들 카드뉴스에 릴스까지 만들어 올리는 속도가 걍 미쳤음ㅋㅋㅋㅋㅋㅋ
-
그와중에 여자 승 ㅋㅋㅋ 한남들 화력 진짜 ㅈㄴ 부족하구나싶다
-
씨발 집지키라고 들여놓은개가 주인을 물어? 아무리 윗대가리들이 시켰고, 아무리...
-
내일 학교가야 하거든~...
-
근데 계엄령 몇달 전부터 준비한 것 치곤 너무 허술함 5
제대로 할거면 언론사 장악부터 들어가는게 먼저 아닌가..
-
메인안보내줘도됨 4
-
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한 때에는 대통령은 이를 해제하여야 한다. 1
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한...
-
가상아이돌? ㅋㅋㅋㅋㅋㅋㅋ 침투력 뭐노 ㅋㅋㅋ
-
이제 항상 전쟁 대비 해야될듯
-
진짜 자랑스럽네요
-
여자로 사는게 우리나라에서 살기좋을거같은데 뭐 ts빔같은거 실제로없나?
-
이재명 대통령 만들기 프로젝트
-
와 나라 진짜 #~#됐네
-
죽었냐 ? 해제됐으면 됐다고 선언을 하던가 무섭게 왜그러냐
-
ㅋㅋ
-
한동훈?
-
석열햄은 마지막에거하게말아먹고가시네
-
사실상 탄핵 못하는거 아님?
-
나 2찍남인데 0
패배 인정한다 재매이햄이 두창이만큼 빅 이벤트 터뜨려줄꺼라 기대한다 난
-
대 준 석
-
러닝타임: 168분
-
흐흐흐ㅡ
-
자기희생 ㅋㅋㄴㅋ
-
전 보수지만 10
이건 탄핵 찬성이 맞다
-
본인이 웃음이 실실 나오는 재매이햄이면 개.추 ㅋㅋㅋㅋ 0
내년 새해인사 준비중인 재매이햄이면 개추 ㅋㅋㅋㅋ
-
아ㅋㅋ
-
지지합니다...
-
보수로 남았다간 돌 맞을듯
-
우리학교 에타 꼬라지 13
심각성을 모르는 다수도 존재하는것같다.
-
이재명이 될거같긴한뎅
-
우리학교 2찍남 소굴인데 낼 학교 반응 궁금하네 ㅋㅋㅋ 0
교사새끼들은 싹다 좌파라 개지랄하긴할듯 ㅋㅋㅋ
-
모집정지면 ㅈ되는데 ㄹㅇ 하………
-
Wow 입갤 ㅋㅋ
-
무조건 실리고 6 9 수능 중에 무조건 나온다
-
와우
-
“전 세계에서 가장 빨리 계엄령이 철회된 나라“ 가능함?
-
뭐 큰 거 준비하나? 뭐지 왜 아무것도 발표를 안해 ㅈ됨을 감지한 건가
-
무섭다
-
실화가 3시간 컷인데 분량이 되냐?
-
형이 군대에 있어서 쫄았음뇨
-
ㄹㅇ
읽진 않았지만 개추는 드렷습니다~
고맙다 태식아..
낮시간대에 재업하시는 게 좋을듯?
난 저문제 해설이 필요해
저 문제 되게 뜬금없이 어려워서 당황했는데 재밌고..
g(x)가 연속이란게 왜 멀리 있는점으로의 확정 조건인지 좀만 자세히 설명 부탁드림다 ㅜㅜ
0일때는 후보군이 두명이지만
0보다 조금 큰 경우를 생각해보시면 됩니다