[수학] 20번이 신유형이라고?
안녕하세요
오르비 수학강사 이대은입니다.
2025학년도 수능이 끝나고
첫 글인 것 같네요.
이 글은 25학년도 수험생보단
26학년도 수험생에게 더 도움이 될 거예요!
이번 수능 정말 애매합니다.
등급컷에 대한 이야기도 모두 다르고,
그래서 난이도가 쉽다는 건가
어렵다는 건가
애매하죠.
아마 내년 수능을 준비하는 학생 입장에선
많이 난해함을 겪지 않을까란 생각을 합니다.
오늘의 글 주제는
2025학년도 수능 20번처럼
신유형이 등장했을 때를 대비하는 방법
에 대하여 글을 적어볼까 합니다!
1. 사실 신유형은 없다.
자극적으로 부제목을 정하긴 했으나
저는 수업할 때
이 세상에 신유형은 존재하지 않는다.
라는 말을 정말 많이 합니다.
결론부터 말씀드리면
우리가 느끼는 신유형이라는 문제들은
기존에 존재하던 유형들의 조합이 새로울 뿐
과거에 없던 유형이 등장한 건 아닙니다.
이번 2025학년도 수능 20번을 통해 위의 말을 이해해봅시다.
이번 시험지에서 가장 신유형이라고
평가받는 문항입니다.
이 문제가 신유형이라고 평가받는 이유 중 가장 큰 이유는
문제에서 요구하는 k값을 구하지 않고
풀어야 하기 때문입니다.
최종값에서 괄호 안의 값을
함숫값으로 나타내고 조건에 주어진 항등식 관계를 이용해야 답이 나옵니다.
이와 같이 미지수를 구하지 않고
문제에서 요구하는 최종값을 직접 구하는 문제는 이번이 처음이 아닙니다.
제가 기출분석 강좌 선에서 강조했던 문제 중 한 문제인
아래의 15년 10월 교육청 나형17번을 보시면
마찬가지로 a를 구하지 않고
직접 최종값을 구하는 문제입니다.
완전한 풀이를 설명하진 않겠지만
이 문제는 삼각형의 넓이를 a로 나타냈을 때
와 같은 식이 등장하며 a의 값을 몰라도
답을 구할 수 있게 됩니다.
15년 문제가 도형을 이용한 문제로
삼각형의 넓이를 문자 a를 이용하여 나타낸 식의 형태에서
최종값을 끌어내는 문제라면
25학년도 수능 20번은 항등식을 이용한 문제로
문제에 주어진 함수와 항등식의 형태를 이용해
최종값을 끌어내는 문제 입니다.
도형과 항등식은 누구나 알 수 있는 큰 유형이므로
25학년도 수능 20번은 완전한 신유형이 아님을 알 수 있습니다.
물론 지금 이 문제는
최대한 한 문제와 억지로 유사함을 끌어냈지만
보통의 경우 여러 문항들에 들어 있는 각각의 유형들을 이용해
한 문제가 만들어지는 경우를 따져보면
훨씬 더 유사함을 보인다는 것을 알 수 있습니다.
2. 너무 결과론적인거 아니냐,,?
억지라고 느껴질 수 있습니다.
하지만 이런식으로 기출문제를 접근하지 않는다면
즉, 과거에 경험한 문제들을 이용해 수능에서 도움을 받을 의지가 없다면
우리는 왜 기출문제를 중요시해야 하나요?
여기서부터가 핵심입니다.
이미 존재하는 유형이다.
라고 말하고 글을 끝내면 아무 의미가 없죠.
결국 모든 시험지에 등장할
이런 문제들을 대비하기 위하여
과연 어떤 공부를 해야 하는가
라는 고민을 해야 합니다.
물론 우리가 10문제의 기출문제를 공부하고
여기서 4-5개의 문제가 수능에 나오는 게 아닙니다.
몇 백, 몇 천 개의 기출문제를 공부하고
이 중에서 30문제가 나오는 것이죠.
심지어 4점 문항만 고려하면
13문제가 나오게 됩니다.
따라서 우리는
기출문제를 얼마나 어떤 문제를 푸느냐
보다
기출문제를 어떤 방식으로 학습하느냐
가 훨씬 더 중요합니다.
나중에 칼럼으로 한 번 자세히 소개하겠지만
가장 올바른 방식을 한 줄로 정의하면
최대한 상세히 유형을 구분하고, 구분한 유형별 풀이법을 완전히 암기하는 것
입니다.
예를 들어,
위에 25학년도 수능 20번을 기출분석에서 다룬다고 했을 때
다음과 같이 정리할 수 있습니다.
만약 지금처럼 모든 기출문제를
꼼꼼하게 정리하고 암기했을 때
결국 신유형에 대한 대비는 생각보다
뻔하고 쉬운 방법을 통해 할 수 있는 것이죠.
이건 신유형에 대한 대비 뿐만이 아니라
수학공부에서 특히 기출분석에서 가장 중요한 방향성
입니다.
*자세한 문항 설명이 필요한 분들은 아래 영상을 참고하세요.
오늘 글은 여기까지입니다.
사실 내용을 깊게 적으려다
수능이 끝난지도 얼마 지나지 않았고,
내년 수험생 분들은
아직 기말고사 대비로 바쁠 것 같아서
맛보기 느낌으로 간략하게 적었습니다.
곧 상세하게 적은 글로 돌아올게요.
25수험생 분들은 정말 고생 많으셨고
26수험생 분들은 저와 같이 내년에 파이팅합시다.
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등급컷은 12/5일에 알 수 있는 건가요?? 탐구만 해당되는 얘긴가요?? 아니면...
-
연세대 버닝이벤트 ㄷㄷ
-
생각은 할수 있어도 교육업계 종사자가 저렇게 편향된 발언을 하는건 문제 있다고 봄
-
기차탑승완료 6
이제2시간만있으면 대구도착
-
이거 정시에서 떼오는 거 아니죠?
-
진짜 문레기라고 무시함?
-
자본주의는 너무 유기적으로 연결되어 있어서 내가 필요로 의해 산 제품이 착취 당하고...
-
연세대, 다음달 8일 수시 논술 ‘추가 시험’ 치른다 28
2025학년도 수시 논술 전형(자연계열) 시험 문제 유출 논란을 겪은 연세대가...
-
1스택 적립완료 13
앞으로 몇년이 남았을까나
-
1차시험응시자도 응시가능 261명 추가선발
-
시간 개아까움...
-
웹툰 추천좀 9
나심시매
-
성적 변화도 같이 적어야징
-
사건 요약 신생아실 붙어있던 4명 동시에 사망 세균성 패혈증으로 추정됨 (아마도)...
-
그렇구나..
-
술마셔서 멍청해진 머리 13
스도쿠로 정상화시키는 중
-
대박이네요
-
커뮤니티 특 3
분탕치러 들어온 유입이랑 준고닉이 영혼의 키배를 뜨고 있는데 50%는 관심없음
-
음료수 마실 때 7
빨대로 보글보글하면 너무 애샛기임?
-
나 솔크 아니긔 4
릴스가점지해줫긔
-
ㅈㄱㄴ
-
클스마스에 부산가는데 눈오면 좋겟다
-
크앙 공룡이다 2
크아앙
-
인증이 너무 오래걸리는걸보니 여초커뮤에서 스샷지원받는중인가보네요 느그들본진으로 돌아가주세요^^
-
안녕하십니까. 올해 10월 12일 시행된 2025학년도 자연계열 논술시험과 관련하여...
-
충북대 - 주차장에 컨테이너박스 놓고 수업 단국대 - 간호대 건물에서 수업...
-
고2때 써도 고3때도 가능함요?? 일부러 아껴두고 있었는데
-
레디컬 성향은 많지 않아도 어차피 페미 자체가 여자한테 이득이면 이득이지 피해주는...
-
배재대 수준 0
동아대 조선대가 지거사(거점 사립대)라는데 왜 배재대는 아니니?
-
눈 적당히 오랬더니 걍 눈을 투하하고 있네 하..
-
아 폭설인데 7
이정도면 가다가 눈사람되겠네
-
평평이들 1
음모론을 광신적으로 믿는 이유를 자신의 정체성의 일부가 되버렸기 때문이라 그렇다고...
-
인생 개좆같네 진짜 시발ㅋㅋ
-
학교 학과까고 6
키배뜨면 안쫄리나 동기나 선배가 알아보면 어떡함
-
01년생 ㄷㄷㄷ 존잘+ 의대생 +기피급 생1 저자
-
그래서 원래 걔가 올라오기로 했는데 걍 내가 가기로 함 성심당 가는김에 친구도 보고 일석이조
-
*재탕입니다. 어제 모 회사 문항 공급 계약 미팅을 나갔는데 잡담을 좀 나누다가...
-
입시판에서는 막 서강대가 성균관대보다 몇점이 높니 외대가 낫냐 중앙대가 낫냐 ㅈㄴ...
-
평소 역사랑 지리에 관심 있어서 세지랑 친구 추천으로 사문하려고 했는데 이번에 세지...
-
눈 무게 때문에 나무가 부러짐
-
난..루 1
저 외톨이..
-
근데 손주은 3
이번에 고등학생 대상으로 한 입시 설명회에서 저런 말 한 게 레전드임 ㅋㅋㅋ 여학생들도 많았다는데
-
애인 실험끝나면 데리러 갈 준비나 해야지
-
확 씨 아주
-
주입식 교육 3
너무 야한 것 같음 헤으응
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
면접에서 준비 못한 물벼룩 실험 질문 들어왔는데 순간 에피네프린이 작용하면 심장이...
-
나 이러다 집 못돌아가겠는데
으흐흐
잘 읽었습니다 좋은 학습 자료 올려주셔서 감사드립니다
'복잡한 형태의 최종값은, 개별로 구하지 못할수 있으며 set값으로써 구해야할때가있다.' 라 말씀하신거맞지요?? 이런 접근은 중학문제에서도 자주 나오더라구요 ㅎㅎ
오호 맞습니다! 뭔가 말씀하신 게 더 고급진 표현 같네요 :)