올해 수학 21번 정확하게 풀기
1) 풀이.
f(x)는 삼차함수이므로 중간값정리에 의해 실근을 하나 이상 가진다.
f가 alpha≠-1인 실근 alpha를 하나 이상 가진다고 하자.
그러면 조건에 의해 f(alpha)=0 -> f(2alpha+1)=0 -> f(4alpha+3)=0 ->...임을 알 수 있고,
alpha≠-1일 때 alpha -> 2alpha+1로 가는 함수는 증가 또는 감소하므로 이 값들 (alpha, 2alpha+1, 4alpha+3,...)은 모두 다르다.
따라서 f는 근을 무한히 가지고 0다항식이 아니기 때문에 Lagrange's theorem에 의해 모순이다.
따라서 f는 -1만을 근으로 가진다.
2) Lagrange's theorem.
0다항식이 아닌 복소계수 n차 다항식 f(x)의 복소수근은 n개 이하이다.
pf) n에 대한 귀납법.
n=0이면 f(x)가 0다항식이 아니므로 근은 0개.
n-1일 때 가정하고,
f(x)가 n차 다항식이라 하자.
만약 f(x)=0의 근이 없으면 증명은 끝난다. 근이 있다면 그 근을 alpha라 하자.
나머지 정리에 의해 f(x)=(x-alpha)Q(x)+R인 복소계수 다항식 Q(x)와 R이 존재하고,
Q는 n-1차 다항식이고, f(alpha)=0이므로 R=0이다.
f(x)=0 <=> (x-alpha)Q(x)=0 <=> x-alpha=0 or Q(x)=0이므로,
귀납가정에 의해 f의 근은 1+(n-1)=n개 이하이다.
3) Lagrange's theorem과 Fundamental theorem of algebra.
위의 정리보다 좀 더 강한 명제인 0다항식이 아닌 복소계수 n차 다항식 f(x)의 복소수근은 정확히 n개이다.
라는 사실은 거의 모두가 알고있는 명제이지만 고등학교 2학년 수준의 개념만으로도 쉽게 증명할 수 있는 Lagrange's theorem에 비해 이 명제의 증명은 매우 어렵다.
이 명제를 대수학의 기본 정리라고 알고있는 경우도 많은데 이 명제는 그저 대수학의 기본 정리의 따름정리일 뿐이고, 대수학의 기본 정리의 진짜 의미는 다음과 같다. (대수학의 기본 정리가 성립하면 자명히 성립)
대수학의 기본 정리 (Fundamental theorem of algebra.)
상수가 아닌 복소계수 다항식은 항상 복소근을 하나 이상 가진다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지1 인강추천좀 4
올해 오지훈들어서 박선,이훈식중에 생각중인데 뭐들을까요
-
ㅎㅇ 3
ㅂㅇ
-
중대 마피아가 누구죠?
-
등급컷 희망회로 7
국어 언매 89 화작 93 수학 확통96 미적84 기하88 경제42 (가채점 입력한...
-
. 진짜 나 물리를 어지간히도 좋아했구나
-
모의지원자 점점 채워질때 마다 합격컷이랑 제점수가 가까워짐 역시 짠게 맞다니까.
-
수면양말에서 자꾸 털 빠짐… 지금 내가 걸어다니는 곳곳마다 흘리고 다녀서 헨젤과...
-
한 2박3일로
-
https://m.dcinside.com/board/sdijn/1500322 올해...
-
저는 올해 강남대성 s2를 다녔습니다. 6월 강모 제외하고는 한번도 빌보드에...
-
어? 7
-
나 고대좀 가자 제발 ㅜㅜ
-
박선쌤 현강에서 받은 자료들입니다. 서바이벌전국, 데이브레이크 등등 있습니다....
-
저랑 만나싷분 5
지금만나면 오마카세
-
기록 보니까 싱겁게 끝났구만
-
"진실되게 투표한자는 올해 원하는 곳 갑니다..." 수능 현장에서 생명과학1 응시한...
-
바나나킥 중독자
-
화작 95 언매 92 미적 88 전원생존, 85-87 희비교차, 85 언더 2 확정...
-
걍 태어날때 부터 의사에 대한 혐오를 가지고 태어나는 듯
ㅇㅅㅇ? 이런문제였나
나 이거 어케 풀었지
이게왜07이지
라그랑주 승수법의 그 라그랑주인가 보네
근데 07이라니... 신기방기
킥킥 라그랑주가 한게 많긴하죠
내가 생각한것과 비슷한 논리군.
전 공통에서 이 문제가 젤 좋은 문제 같음
근데 수학적 의의가 있지 수능에서 좋은 문제는 아닌것 같아요
아 그런가요? 수능은 어렵군요
비슷한 맥락인지 모르겠지만 삼도극이나 등비급수 같은것도 빠진게 직관이나 근사로 풀리는 건데 이 문제도 좀 그런거 같아서요
아 무슨 의민 줄 알 것 같네요. 수험생들 입장에서 정확한 논리보다는 직관을 통해 풀리는 문제라는거죠?
그쵸
문제 자체 논리가 좋은 건 맞음
다시보니 상수항도 제대로 안봤네 나