다시 정리함
모순<->(A and not A)<->거짓
(A and not A)가 거짓이면 A나 not A 둘중에 하나가 거짓
따라서
모순->어떤명제가 거짓
대우명제는
모든명제가 참이면->무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
모순<->(A and not A)<->거짓
(A and not A)가 거짓이면 A나 not A 둘중에 하나가 거짓
따라서
모순->어떤명제가 거짓
대우명제는
모든명제가 참이면->무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
근데 모든명제가 참이면 당연히 모순이 없는거 아님?
무모순이기만 하면 수학에선 다룰수 있으니 모든명제가 참인세상도 다룰수있어야함
다루면 되는거 아님?
그런데 수학자들이 모든명제가 참이라고하는거 본적있음?
그럼 모든명제가 참인건 아닌가보지
모든명제가 참이면 무모순인데?
그니까 그게 아닌가보죠?
전제가 틀림 모순은 반대되는 두 명제가 모두 참이거나 거짓이어야됨
아까 분이랑은 말이 다르네...?
p and not p가 둘다참이면 모순이 참이되는데요?
모순에 참거짓이 어딨음 모순이 참이다 모순이 거짓이다 이런 말이 있음?
모순=(A and not A)
a and not a가 참이거나 거짓이어야 모순임
모순은 거짓이라고하던데
'두 명제가 동시에 참일 수도, 거짓일 수도 없는 경우'를 말한다.
동시에 참일수도 거짓일수도 없으면 a나 not a중 하나만 참인경우죠