수학황분들
이런 것도 술술 푸시는 건가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜 안 보내줌??
-
今我異昨我 6
오늘의 나는 어제의 나와 다르다 ..... 그 말이 옳을까?
-
좀 할 일 제 때 하자.
-
작년 내 합격증 보내달라더니 그걸로 수능부적 만들었농 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ
-
성공은 갑자기 이루어지는 것이 아니라, 반드시 그 원인이 있다
-
수능가서 3등급 가능한건가...
-
아진짜자야하는데 2
아
-
솔직히 디지몬 어드벤처는 명작이라고 생각해요
-
원딜은 주인공이 될 수 없어 내일부터 미드로 전향한다 버러지라인
-
복잡한 추론을 해야할 것 같은 비주얼인데 본질이 계산인 경우가 … 있는 것 같으니...
-
원주각의 성질 이용해서 ACB 구하는 것부터 막혔습니다.. ㅜ
-
실수좀 제발 안 했으면 제발..
-
시반말고 여르비인데
-
내인생최대전성기 4
2024년11월14일 마지막에누가웃는지보여주죠
-
살도 빼는 빼빼로를 먹으면서 빼빼 말라지는
-
1교시니까 7
자러감 자잘!
-
개형추론나오면풀가능성0에수렴
-
기가막힌 공부법
-
자야겠다
-
평가원 특 1
예측이 불가능한 존재임
-
초인적인 힘으로 다 맞게 되어 있음
-
25수능 22번 유출 14
어려워보이네요
-
저도 믿습니다 3
출제진들이화학19번에열용량을출제해놨을거라고
-
ㅠㅠ어디갓어내첫사랑
-
감정선 좀만 더 잘 쌓지 후반부 너무 전개 급하게 하는 게 보임
-
저는믿습니다 7
출제진들이수학22번에삼각함수를출제해놨을거라고
-
변별이아예안된거도아니고 그냥이제메타바뀔때도됐음ㅇㅇ 좆같은개형추론ㅗ
-
수학 잘해지고 싶다 11
수능 미적백을 받고 싶다
-
님들이 보기에 올해 22번 6,9모처럼 수열일까요? 3
어떻게 보시나요??
-
그냥 빨리 끝내고 술이나 퍼마시고 싶었습니다 남은 D-7 누군가에겐 마지막 희망,...
-
연애라... 6
대학 가면 할 수 있을까 혹시 대마법사가 되는 건 아닐까
-
물론 역학에서 약간 계산 잡아먹는 문제 제외하고 나머지는 깔끔하게 풀림 실력이 오른거겠지
-
암컷 !!
-
안녕히주무세요 0
일주일동안 이기는 삶을 살아봅시다요
-
수험생은이시간에없겟죠? 18
ㄹㅇㅋㅋ
-
총알보다무서운건 2
MC의철학 인문철학지문 읽는중
-
이센스 - 비행
-
내 여친임. 1
-
나 인정받았다 2
개그맨으로,,,
-
진짜 경제가 왜 자꾸 눈에 밟히지...
-
사문 질문 5
분모가 다를때 ㄴ 어떻게 구하나요?
-
내 남친임 2
피뎊 어허~~
ㅋㅋㅋ훔...
30인가
No...
아 45이군요..
맞아요! 핵고트시군요.. 수능 보면 백분위가 몇 나오시나요??
현역이라 수능은 안쳐봤어요 6모는 99입니다
와우 대단....
1. 대충 문제만 읽어봤을땐 f(x)=0인점 f'(x)=0인점 이렇게 3가지에 대해서 조사해보면 될듯
2. 그 불연속인 점이 (나) 조건 만족
아 (0,0) 지날거같은데
해강에선 7개? 찾고 와랄라 하시길래 벽 느껴버렸습니다..
(0,0) 지나고 x=a(a≠0)인 점에서 f(a)=0, t=a일때 불연속일듯
헐 맞는 거 같아요 어느정도 경지에 올라야 저걸 풀 수 있을지....
그냥 이것저것 풀다보면 느낌이 오는..?
ㄷㄷㄷ...
저 문제는 딱 보자마자
x=t에서의 접선 ->
보통 접선과 만나는 두 점의 평균값 = 미분계수가 0인점의 x값 ->
절댓값이니까 만나는 점은 자기자신 + 두 점(평균값이 미분계수가 0인 점의 x값) ->
이게 아닌 점은 f(x)=0인점 ->
한 점에서만 불연속 ->
(0,0) 지남
이정도가 떠올랐고 나머진 계산만 조지면 되니까..
ㅋㅋㅋ와우.....
(가)조건은 x절편 하나가 0이란 거고 (나)조건은 사진 조건쓰면 바로 보이네요
1. 불연속 가능한 건 절편뿐이니까 2x=x ->x=0으로 절편이 0인 경우 2가지 잡아주고
2. g는 +2했을 때 부호 반대 절댓값 같음 -> 절편 하나가 -4여서 g는 -4와 0로 불연속(절편 하나가 0이라서 사진의 성질로 인해 -4인 걸 모를 때도 0은 알 수 있음) -> 절편이 -4와 0
이런 식으로 생각했어요
맞는 거 같아요!!! 여긴 고수들이 즐비하는 곳이군요,,,....
마자뇨
직관이 바로 그냥 팍
또 나만 안되지...
아니 ㄹㄹ 어케하는건데 야발....ㅠㅠ
여긴 수학황인곳 맞는거죠...ㅠㅠ 1등급이 만약 이런분들에게만 주어진 장소라면 ㄹㅇ 갈 엄두도 안날것갗은데...ㅇ머냐고대체
풀 때 종이에 대충 끄적여서 못 알아볼까봐 새 종이에 사고과정 정리해봤어요. 도움이 되길 바라요.
중간에 오른쪽 상황이 더 끌린 이유는 왼쪽 상황, 즉 근이 0과 양수인 상황이면 왠지 불연속일 때 양수라서 더해서 절댓값 씌우는 게 안 될 삘이라 그랬어요
위에 댓글 다신 분 풀이가 2차함수 대칭성까지 잘 쓴 깔끔한 풀이 같네요. 글쓴이님 덕에 안목 하나 얻고 갑니다.
이런 류 문제를 풀어보싱적 있으신건가요 아니면 그냥 시키는대로 해서 쫙 뽑나내신걱가여..
3년 전 현역 때는 수2 드릴+워크북 한 세트는 풀어봤었는데 지금은 뉴런 아직 못 끝낸 상황이라 저런 문제를 풀어봤는지 잘 모르겠고 풀어봤다고 해도 기억에 남아있지는 않아요.
ㅠㅠㅠㅠ저도수ㅏㅅ학잘하고시퍼오우우유유ㅠ유ㅠㅠㅠㅠㅠㅠㅠ 전혀 예상못한 정성답변 감사드려요
그래서 일단은 시키는대로해서 쫙 뽑았다는 쪽에 가깝긴해요.
그 사고과정을 조금 더 상세하게 말씀드리자면 ~~f(x)까지 읽으며 x축 뚫는 2차함수그래프 머릿속에 그리고 방정식 읽고 접선방정식에 절댓값이니까 접선 꺾는 거 상상하고 f(5) 구하라는 거에서 함수 결정되겠네하고 생각하고 (가) 읽고 ‘불연속? 접선 쭉쭉 가다보면 교점 3개다가 절편접선일 때 2개가 되는데 3개 중 둘이 하나로 수렴하네? 그러면 절편접선일 때 불연속이 될 수 있겠네?’+’근데 절편 두 갠데 왜 하나만 불연속이지? 어떻게 하면 절편인데 연속이 되지? 아 0이면 두 개든 한 개든 합은 같네.‘ 그러고 (나) 읽고 위에 첨부한 종이에 쓴 것처럼 풀었어요
개..지린다.. 난 3개중 둘이 하나로 수렴하네? 왜 두개지? 아 몰라 개어렵네 버려버려 로 끝나는데 확실히 다르군요,.