[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
자퇴생이라 선택과목 아무것도 안 해봤는데 그렇게까지 과탐이 안 좋나요? 1학년...
-
진짜 너무 급합니다 현역상근 입영일자 신청하면 어떻게 되는건가요? 제가알기론 일단...
-
유튜브에서 봄
-
2209 공통 56.98 미적 14.80 총점 71.78 2511 공통 57.75...
-
절대로 글삭하지 말고 쭉 오래오래 냅두고 나중에 고3이 되면 다시 그 글을 보러 가...
-
변표 나와도 큰 타격 없을까요 미적사탐 정외 지망인데...
-
형들이 오해해서 미안하다
-
저메추 받음 3
ㅈㄱㄴ
-
미국마냥 저런 고능아들 다 모아서 육성시켜야 대는대;; 의사변호사말고;;
-
지구 3
42에 1떴으면 좋겟다 백분위가 터져도 좋아..기도메타 on
-
본인 할 거 잘 하면서 엇나가지만 않으면 뭘 하든 딱히? 나도 롤에 5000시간...
-
ㅈㄱㄴ
-
전 아니라고 봄
-
노인정이라고 놀리는 거 내 역할이었는데 내가 경로당에 들어가게 생겼어
-
지방한vs연고경 12
지방한이랑 연대 경영중 어디 가야하나 고민중인데.. 적성은 변호사쪽이 맞아서 연대...
-
초중고 어디에든 늘 그런애는 존재했던거같음 자기 선행 어디까지갔다 자랑하고 일부로...
-
S.I.M.P.L.E. S-Simple, you say? I-I don't...
-
시간 체감 3
이 문제 나온지 1년 넘었음
-
걍 노인정이엿음
-
초6이 저정도면 ㅆㅌㅊ데 당연히 초6이니까 잼민이 마인드도 있겠지만 저정도면 훌륭한...
-
3컷이어도 되니까 ㅈㅂ 3….
-
초딩무서워 4
사이버 경로당까지 침공하면 난 어디로가야하는거지
-
김과외 질문 3
이거 제안 넣었는데 학부모님이 읽긴했는데 그 학생이 맨 위에 뜨면 거절이라고 봐야겠지.....?
-
오르비에 숨어서 활동하는 나.사.모(aka나이많은사람들의모임) 32
응원한다 화이팅하자……..
-
밸런스게임 6
김정은에게 고백받고 유명해지기 vs 김정은에게 고백박고 유명해지기
-
근데 저 초6 친구한테 삼촌뻘인 사람들 꽤 있을 듯 14
초6이면 13살일 거니까
-
성공
-
ㅜㅜ??
-
이거 오랜만이다 3
내일은 격파왕
-
한국의 미래를 위해서 받아줘야됨뇨?
-
대치기준 지하철 통학임 주엽역 -> 대치역 ;;
-
순수 궁굼증 2
전부 노베인 상태에서 기하 과탐 올1 만드는거랑 미적 사탐 올1 만드는거랑 뭐가...
-
핵보다 더쌜거같은데
-
제가 이런거에 대해서 맹인인데, 보통 92점들 보면 선택 2틀이 많더라구요.선택...
-
근데 뭔갈 배우면 배울수록 자신이 아는 게 없다고 느껴짐 7
언어학 덕질하니까 느낌 배우면 배울수록 내가 부족하구나를 느낌 지금 봉우리에서 겨우...
-
꿀잼임뇨
-
시간진짜빠른듯 0
저번주까지만해도 가을인가했더니 갑자기 날씨 바뀌네요. 감기조심하시고
-
D-348 공부 0
-
12월 말부터는 해야되나?
-
공통에서 20번 빼고 한번에 막힘 없이 빠르게 다 품 27번 못 품 28번 문제 안...
-
현실은 전설이라네~
-
애초에 이 세상은 누가 많이 아느냐의 싸움이 아니라 누가 빨리 벗어나냐의 싸움...
-
실력 정석 살까요 수특 살까요
-
오르비 로고 만든거 21
한글날 에디션 할로윈 에디션 원래꺼 변형한거 (나머지 잡다한 것들) 재밌네요 이런...
-
시험기간인데 어카뇨...
-
머리카락 쥐어뜯어서 1개 뽑히면 무슨무슨 의미고 2개 뽑히면 어쩌구저쩌고 10개...
-
저메추해주세요 14
맛있는거 배달시켜먹을테야
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ