[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
단국대는 다른 분캠잇는 대학이랑 다르게 대부분 분캠 잇는지 모르나요? 0
부모님분들이나 딱히 입시관심없는분들에게.
-
정상화가 안 된다면 스스로
-
의반+대깨설(의)+최저러+기해분 출시 극상위권(48점 이상) 변동은 별로 없을 것...
-
team07...화이팅
-
개열밧내 5
수시납치도 카이스트 쓸수있다매 쓸걸;
-
나 어캄?
-
복귀할까
-
휴학 신청 완료 5
2026년 1학기에는 다른 신청을 할 것...
-
밥 혼자 먹ㄱ으면 되겠지
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][성적/재수강/출석] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
티끌 모아 태산
-
ㅇㅂㄱ 3
-
붙으면 다들 어디감? 훌리 억까 다 거름
-
원래는 이러면 안되는거임?
-
노란색으로 되어있는 레어를 사면 약 20% 페이백 파란색으로 되어있는 레어를 사면...
-
장난빼고 진지하게 입결말고 그냥 사회적인식, 동문파워, 취업률 등등 합쳐서 의대기준...
-
천연가스 진짜 0
3월물이 3.5인게 말이 되냐구...ㅠㅠ
-
뀨뀨 6
뀨우
-
나랑 맞팔 해조 0
고고고
-
AD MARE네?이건 지켜야쥐
-
시대북스에 떴다 ㄷㄷ
-
점공 질문 제발 한 번만 살려주세요 ㅠㅠㅠㅠ 정말 간절해요 3
안녕하세요 들어와주셔서 일단 정말 정말 감사드리고요 님 학교도 다...
-
국어 질문 0
심찬우선생님께서는 이걸 어떻게 읽으실까요? 첨보는 단어가 너무 많아 메모 안하면...
-
으악 너무 추워 0
플리스랑 목티 입었더니 비바람이..
-
하아...
-
러셀특 0
새로 알아보는 지방러 입장에서는 이게 진짜로 출강을 한다는 건지 코어인 건지 존나 헷갈린다
-
옯스타 좋은 점 4
따뜻한 디엠가능
-
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
투투하고싶다 16
현실은 물1지1....
-
ㅈㄴ어려움ㅋㅋ
-
난 이런 날씨가 좋다 10
밝은 날씨 별로야
-
ㅇㅂㄱ 0
-
수도권을 오가는 교통편의 편리함과 취업률을 강조함
-
안녕하세요 오르비 디렉터입니다. 오늘은 오르비북스에 대해 알아보겠습니다....
-
우울하네 0
날씨가 우중충해서 그러나 모르겠다
-
무슨 기분인진 나도 몰라여
-
만화에서 가상의 캐릭터가 죽어도 슬퍼하지 않냐는 댓을 보고 약간 이해하게 됨
-
산하나를 못넘겠음
-
공리=거짓 0
(A가 거짓->모순)(A가 참) A에 공리 대입시 (공리가 거짓->모순)(공리가...
-
점메추
-
현역 정시파이터입니다! 노베이스고 1~2학년때 공부를 대충하고 이제 막...
-
다음 글을 읽고 물음에 답하시오....
-
담뇨단이 되어버린 이야기 담뇨담뇨
-
ㅈㄱㄴ
-
더프로라도 에피를 달아야지 에휴다노
-
목표 메디컬 (일단 약대) 인데 작수 물리 2, 지구 4 (6평 4, 9평...
-
충남대 수의대 합격자중에 빠지시는 분 계신가요..? 보시면 연락주세요
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
올해 진짜 진짜 충분히 낼 수 있는 소재라 생각합니다!!![](https://s3.orbi.kr/data/emoticons/dangi/034.png)
항상 감사합니다혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ