2025年 사관학교 27,28,29,30 Solution
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
지금 지하철 타고 가는중읻데 1시까지 입실인걸 못보고 1:30까진줄 알았는데 1시...
-
한양 상경 0
한양 상경 인문은 ㄱㅊ고 수리 1,3 맞추고 2번 풀이 다 쓰고 정답까지 냈는데...
-
예전 글인데 다시 퍼올립니다 읽고 가슴에 무언가 와닿았으면 합니다 꿈꾸는 공대생...
-
텔그에서 카관의 0
지금 몇점대에요??
-
한양상경논 4
아 2번문제 1,3,5,9 15까지 구했는데... 코사인 법칙으로 푸는것이라고...
-
어땠음 계산 개많던데
-
다들 생각이 너무 깊어
-
외대 떨어질 것 같지만 10
(가) 참정권 - 여성 '제외' (나) 수은 - '포괄 정책' (다) 추상화 -...
-
텔그에 초록불 들어왔다... 제발 탐구병신을 구원해다오..
-
문과 재수 6
근데 문과는 재수하면 어디서 함? 기숙이나 재종가면 탐구는 어차피 인강으로 대체...
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
-
멍청이 나형러에게 사배자 나형 전형 부활 점 ㅠ
-
시험 내용 지금 말해도 괜찮음?
-
흠ㅋㅋㅋㅋㅋㅋ 솔직히 과목이 너무 쉽긴해서 쫄리네
-
하루에 공부 6~7시간이면 수학은 몇시간 정도가 적당한가요? 4
지금 하고 있는 수학은 수분감 0단계, 학원 숙제 이 두개 하고있는데 수분감...
-
대학이 높을수록 길이 많아지는건 맞아도 그게 전부가 아닐뿐더러 오히려 수능을...
-
대구물가머노ㄷㄷ 3
칼국수가 5000원이네 칠성시장에서
-
냥대 상경 수리 9
1번 1번 최대 x=8 최소 x=6맞나유?? 구간 [-2,3] [4,8] 나오던디...
-
얼마나 옴? 우리 고사실은 25명중에 5명 옴 ㅋㅋㅋ
-
얼마나있나요? 지금 출발하셧나요? 어디쓰셨나요?
-
장난아냐
-
뭐 이번에 탈출이 가능할진 잘 모르겠는데 나처럼 우연의 연속이 계기가 된 사람이 얼마나 될까...
-
냥대 상경 0
답만 틀리거나 2번에 약수 하나 빼먹은거 과정은 다 맞았는데 부분점수 주나?ㅠ
-
도대체 사랑이 어떤거길래
-
대학들이 하고 싶다고 할 수 있는게 생각보다 없음 15
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
-
부산시 현역 1
수필 3합4 과탐1개 250명 정도 맞췄대요.. 이 중에 내신 나보다 높은 애들은...
-
ㄷㄷㄷㄷㄷㄷ
-
근데 이거 변표는 작년기준으로 계산하는거임??
-
지듣노 2
ほら あなたにとって 호라 아나타니 톳테 봐, 너에게 있어서 大事な人ほど...
-
파경 쓴사람 0
다 맞으신분?
-
작년에 정시로 연세대 공대 입학한 ‘일개’ 학생이지만 여러 부분에서 연세대 입학처에...
-
파경 인칼쓸걸.. 싯팔!
-
물론 채점결과 나와봐야겠지만 이제 거의 안변하던데
-
77/27맞나여
-
논술 출발 0
칙칙폭폭
-
출처:한국교육개발원 인하대 과기대 아주대 가성비가 좋네요! 인하대는 이공계 비율이...
-
ㅎㅇㅌ 전 걍 혹시나 해서 보러감 ㅎ
-
무난하게 젤리케이스? 뭐 살지 모르겠넹
-
그냥 떨어지는건가욤..? 부분점수라도 노릴려고 한 두 줄 쓰고 냈는데.. 아무래도...
-
냥대 인터칼리지 9
고사장에 다들 얼마나 왔나여 제 고사장에는 37명 고사장인데 18-19? 옴
-
물2러분들 2
시작은 어떻게 했어요? 개념서 뭐 쓰나요?
-
재수 예정인 06입니다. 문과 전향 예정이라 인문, 상경 논술 준비해 볼까 합니다....
-
후기있나요
-
뭐냐
-
신기해 들어보고싶은데 후기좀여
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데