자작문제) 거리의 합의 최소를 구하는 방법
제가 알기로는 평가원에서 아직 공통에 이 소재를 쓴 적이 없는 것으로 아는데 아마 교육과정 안에 있는지 상당히 애매하기 때문인 것 같네요.
교육청에서는 몇 번 출제했던 것 같은데 평가원의 생각은 어떨지 궁금하네요.
개인적으로는 이 문제와 같이 특정 개념을 알면 쉽게 풀리고 모르면 아예 손도 못대는 문제는 그다지 좋은 문제는 아닌 것 같습니다.
어찌 되었든 이런 소재도 있으니 한번 기억해두는 것도 좋을 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
이거 축에 대칭시켜서 직선만드는 아이디어였나요?
네 맞습니다.
이거 아직 평가원에 안 나왔나요? 처음 알았네요
아마 공통 범위에서는 못 본것 같은데... 사실 저도 완벽히 찾아본건 아니라 아닐 수도 있습니다
드릴 수1에서 본거같은데
직선을 경유하는 최단경로였나
1인가용
대칭시켜서 푸는건 고1수학에 많이 나왔던거같아요
중학 수학에서 주구장창 한ㅋㅋㅋㅋ 강건너기
오히려 옛날놈(?)이라 익숙한
대칭 시켜서 직선을 이룰 때 이거 중딩 때 개 많이 보긴 한 듯
고1 교육청 모고에는 단골소재
이거 수상인가 수하에 함수의 대칭해서 머 있지않나..
교과서를 좀 찾아보니 부록 같은 느낌으로 기재되어 있는 교과서도 있네요
오 비슷한 느낌의 문제가 있네요.
풀면서 진짜 낼게 많이 없어졌나 이 생각 했어요
AP 기울기 -6까지는 최솟값 조건으로부터 도출 가능
A의 y좌표랑 B의 y좌표 비가 1:2이므로 P의 x좌표는 a+1/3일 거임
고로 B의 x좌표랑 P의 x좌표 차는 2/3이니 기울기 정의에 의해 b의 y좌표는 4
2^a+1=4이니 a=1
기벡에서 저거 안나왔나 나왔을거같은데
일단 공통 범위에서 찾아본거라 전체로 따지면 있을 것도 같네요
근데 지수함수는 미적2에서 나왔지 않아여?
아 구나 도형의방정식 관련해서 말씀하시는 건가
고1 수학 단골 우려먹기 소재 ㅋㅋ
안 까먹고 있으면 쉽게 풀리는데
까먹었으면 풀기 난감할 거 같긴 하네요