수학 고수분들 도움좀
해설에 f'(x)는 x>0인 구간에서 증가함수, x<0인 구간에서 감소함수여서 x와 g(x) 크기 비교를 통해 f'(x)와 f'(g(x)) 대소 비교 할수 있다는데 f'(x)가 (나)조건에의하면 상수구간이 나타날수 있지 않나요? 만약 x 와 g(x)가 상수구간의 값을 갖는다면 h'(x)=f'(x)-f'(g(x))=0이 될수 있을것 같은데
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 0
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 3
부지런행
-
확통 미적 고민 8
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
인기없긴해도 점수맞춰야하는걸로알아서요
-
전 게이가 아닙니다.
-
에휴뇨이
-
롤 시즌종료언젠가요
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 3
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
-
밝은척하면서 은근슬쩍 까는거+비틱질 역겨워죽게슴 소신발언
-
얼버기 2
-
스카가야지
-
잠이 2
-
지금 안정은 숙대고 홍대도 냈는데 일단 숙대를 가기로 마음을...
-
여르비랑 한번도 안만나봤는데 만나면 어떨지 호기심이 있음
-
수면패턴ㅋ.. 2
수면패턴 바꿀거라고 지금 밤샜는데 몽롱하고 그냥 자고싶은데 여기서 자면...
-
얼버기 4
-
진짜 미치겠다
-
그냥 26수능으로 sky를 가야겠다 마음먹어
-
제자야 기상해라 1
학원가야지 에휴
-
자야지 1
-
ㅋㅋ
-
게임을안하니까 1
인생이꽤쾌적하네
-
진짜 찐찐 잠 0
ㅈ
-
쿠팡.. 시간빨리갔으면좋게ㅛ다..
-
엄마한테 재수할동안 교정이나해달라고할까
-
잘자 3
바이
-
개꿀잼메타돌앗나보네
-
대답.
-
등장 1
-
그의 유지를 잇기로 했어요 그래서 이름을 바꿈 앞으로 전 개쩌는 아카네 리제입니다
-
안지는 사람? 7
일어난 사람을 찾아야 하나?
-
확백하고싶다
-
나 아직 안잔다 1
그냥 그렇다고
-
26명 모집 92명 지원 점공 29/42 허허...
-
진짜 잠.... 2
에효이....한명이 갔네.....
-
나군 외대 LD 쓰려다 카드 결제 오류로 원서 못 써서 울며 겨자먹기로 성대 썼는데...
-
저 사실 적백 7
내전
f'(x)는 상수함수가 될 수 있는데 h'(x)는 상수함수가 될 수 없잖아욤! x=g(x)인 구간이 있어야 h(x)가 상수함수가 되는데 고렇지 않으니까 h'(x)=0은 이어질 수 없어욤
이 부분이 궁금하신게 아닌가요 ? 헤헤
잠시만용
0<x<1인 구간에서 a<g(a) (0<a<1)이여도 f'(x)가 a부터 g(a)까지 일정하다면 h'(a)=0이 될수 있지 않나요?
문제에서 '그림과 같이' 라고 해서, 저는 f'이 증가라고 생각했는데,,, 뭐, 수식으로만 따지면 맞아요 될 것 같아요. 그림 보다는 수식이 먼저긴 해요 ㅎㅎ그냥 참고로 h'이 0인 구간이 일부 있어도, 최소가 되는 거에는 아무 상관이 없긴 합니당ㅎㅎ
문제 혹시 어디 껀가요??...너무 좋은뎅
감사합니다. 문제는 2017년 이해원 모의고사가 올해 한완수 하편에 수록되어 있는거에요!