[자작 문항] 6모의 계산 더러움을 반영함
뭐 아마 오류가 있을 수도 있겠으나....뭐 문제는 딱히 없어 뵙니당....
고1 수학+계산 더러움(feat. 내신틱)-> 6평 느낌 반영....
이라고 생각함....
풀이에다가 답 알려주시면 1000덕 드림.....
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수시 인하대면 3
정시에 크게 기대 안하고 그냥 인하대 가는 게 맞겠죠? 원래 목표는 건국대였는데...
-
수험생활중 오르비라는 커뮤를 알게됐고 좋으나 나쁘나 입시에 관한 많은 정보를...
-
신은 안 믿어도 지식 측면에서 교리랑 경전 공부는 하고 싶음 웹소 보다 보면 좀 더...
-
해야해 코딩..
-
레어 8
카이스트 오리 이거 어떻게 팔죠
-
이웃을 겁박하라곤 안하긴 했어
-
장수생이 될수록 대학 가기 위해 입시 하는건지 입시하기 위해 대학 가려는건지 구분이 안됨
-
즐거운 명절 보내세요 올해 원하시는 목표 다 이루시길 바랄게요 명절동안 휴릅하면서...
-
“서울대 조발해줘”
-
정치 얘기 꺼내기 전엔 하하호호 웃으면서 잘 지내도 정치 얘기 나오면 생각 따라서...
-
한양대 상담지원 및 또래상담 궁금한 아기사자 클릭! 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
강민철 들으면 1등급 가능한가요
-
비종교인이 기독교를 싫어하는것에는 문제가 없다고 봄 1
안 믿으면 지옥간다는데 좋아하겠냐 비종교인들은 왜 우리 까는거야? 하는거 보면 어이가 없다
-
난 불교가 좋아 3
새해에 산에 있는 큰 절에 갔는데 그때 준 떡국이 ㅈㄴ 맛있어서 불교 호감임
-
신 2
-
예수 안 믿으면 지옥 감<---이런 워딩은 좀 그럼 2
기독교인인 내가 봐도 좀 그래
-
2과목은 아니긴 한데 암튼
-
ㄱㄱ
-
겨울바다로 가자 1
메워진 가슴을 열어보자
-
공스타 맞팔구~ 0
쪽지주세요
-
인하대 패디과 세종대 인문사회계열을 썼음 근데 내가 원하는과는 패디과여서 (2지망은...
-
기독교 소신발언 5
종교메타길래ㅋㅋ 모태신앙이고 20년 교회다녔는데 신이 어딘가엔 있겠지 이런 생각은함...
-
디지몬 좋아하시는 분이 있었는데
-
인생망했는데 한번 더 기회는 줘야지
-
수학1,2 2월부터 기출생각집 4점 풀려고 하는데 기출생각집 2.3점 병행이 낫나여...
-
ㅈㄱㄴ 가끔씩 예외는 있을 수 있겠지만 거의 다 종교인이라고 생각하면 되는건가요?
-
못 사귀는데 그런거 생각할 필요가 없음뇨
-
궁금
-
그냥궁금해서요
-
죽으면 0
그냥 꿈 없이 자고 있는 느낌아닐까
-
독서 양치기 0
독서 양치기 + 강민철 커리하면 다맞는 거 가능한가요
-
괜찮은거 또 뭐있나요 작년에 브릿지만 주구장창풀었더니 브릿지스러운문제에만 너무...
-
진짜 그만 우리 수능 준비도 힘든데 그만하자 이제
-
하...........
-
성경을 근거로 신이 있다고 주장하지마 병신같은년들아
-
공부법이라든지 커리 아는대로 답해드림
-
등급은 언미생지 43224 백분위는 74 87 92 64에요 대치 컷이 수학3이내...
-
메인은 딱 한번밖에 못가본.. 추천주제가 있을까요
-
성경에 나오는 사례가 예수님이 십자가에 달렸을때 옆에 같이 있던 강도가 회개하고...
-
이게 한글뜻을 전부 숙지한 상태로 읽으니까 매끄럽게 읽히는데 낯선지문 보면 또...
-
ㅈㄱㄴ
-
진짜 개꿀잼이었다 얼른 또 해주면 좋겠다
-
사실 종교라기보단 학문에 더 가까운거같은데 불학 교양이 있다면 들어보고싶긴함
-
기독교가 아닌것.
-
탑쿼크 바텀쿼크로 바꾸면 안됨? 딱히 이유는 없는데 그 이름이 더 이뻐보임
-
무슨 경험치가 30퍼밖에 안오르네 ㅠㅠ
-
독실한 개신교 집안에 태어나는 게 얼마나 끔찍한 일이냐면 13
님들이 여기서 얘기하는 논리를 12살 때부터 주장했음 그럼에도 고3 때까지 교회에...
-
원래 라면 값의 3배 이상을 받네요
이런건 왜 반영 크아아아아아악
ㅋㅋㅋㅋ아마 계산하다가 뒷목 잡을 거임....내가 잡음....나도 내 해설 안 봤으면 영영 답 몰랐을 뻔ㅋㅋㅋ
3번으로 찍고싶네요
감각적 직관 a=1 b=4
왜 먹히는 거죠
벅벅
f'(x) = 3k{x - (2a + b)/3}(x - b)
g(x) = k(a - b)²(x - a)
f(x) / g(x)f'(x)
= k(x - a)(x - b)² / 3k²(a - b)²{x - (2a + b)/3}(x - a)(x - b)
= (x - b) / 3k(a - b)²{x - (2a + b)/3}
f(0) = -kab² = -16/27
h(x)는 x = 2에서 불연속이므로 (2a + b)/3 = 2, b = -2a + 6
h(x)는 x = 3에서 불연속, |h(x)|는 x = 3에서 연속이므로
(3 - b) / 3k(a - b)² = -1,
b - 3 = 3k(a - b)²,
-2a + 3 = 27k(a - 2)² → ⓐ
f(0) = -kab² = -4ka(a - 3)² = -16/27,
a(a - 3)²k = 4/27 → ⓑ
ⓐ, ⓑ에 의해
a(2a - 3)(a - 3)² / (a - 2)² = -4
a(2a - 3)(a - 3)² + 4(a - 2)² = 0
2a⁴ - 15a³ + 40a² - 43a + 16
= (a - 1)(2a³ - 13a² + 27a - 16)
= (a - 1)²(2a² - 11a + 16) = 0
∴ a = 1, b = 4, k = 1/27
f(x) = 1/27(x - 1)(x - 4)²
f(5) = 4/27
캬ㅑㅑㅑ
|h(x)|는 오직 x = 2에서만 연속인 게 아니라 불연속인 거 맞나요?
일단 오타인 거 같아서 이렇게 생각하고 풀긴 했는데
넵 오타 맞습니다....수정하겠음뇨