수학2 자작문제
https://drive.google.com/file/d/1oBXNMQJ-GDtRvx8qaFBGvbBGgx9zwaG7/view?usp=drivesdk
이차함수를 소재로 미분가능을 다룬 문제들
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
별로네 재미없어보임 학교안은 엄청 세련됨
-
다들 생각이 너무 깊어
-
물1은 개념만 뚫으면 기출 계속 비슷한거 나오는데 지1은 개념만 쉽지만 지엽 많고...
-
(가) 참정권 - 여성 '제외' (나) 수은 - '포괄 정책' (다) 추상화 -...
-
텔그에 초록불 들어왔다... 제발 탐구병신을 구원해다오..
-
문과 재수 0
근데 문과는 재수하면 어디서 함? 기숙이나 재종가면 탐구는 어차피 인강으로 대체...
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
일단 이력서 열심히 쓰는 중인데 지방에서 겨울 보내고 다시 서울 대학으로...
-
난 서울로갈거임 4
ㅅㅂㅅㅂㅅ
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
-
동덕여대vs부산대라도 동덕여대 고민하는게 ㄹㅇ 심각하다
-
멍청이 나형러에게 사배자 나형 전형 부활 점 ㅠ
-
문제는 쉬운듯 하나빼고 다품 미적 마지막
-
시험 내용 지금 말해도 괜찮음?
-
흠ㅋㅋㅋㅋㅋㅋ 솔직히 과목이 너무 쉽긴해서 쫄리네
-
하루에 공부 6~7시간이면 수학은 몇시간 정도가 적당한가요? 3
지금 하고 있는 수학은 수분감 0단계, 학원 숙제 이 두개 하고있는데 수분감...
-
컴 소프트 전전 많이 힘들겠죠…? 생지러라서..
-
대학이 높을수록 길이 많아지는건 맞아도 그게 전부가 아닐뿐더러 오히려 수능을...
-
물화에 비해 표본 크게 안 오른 것 같은데
-
대구물가머노ㄷㄷ 1
칼국수가 5000원이네 칠성시장에서
-
냥대 상경 수리 6
1번 1번 최대 x=8 최소 x=6맞나유?? 구간 [-2,3] [4,8] 나오던디...
-
얼마나 옴? 우리 고사실은 25명중에 5명 옴 ㅋㅋㅋ
-
얼마나있나요? 지금 출발하셧나요? 어디쓰셨나요?
-
장난아냐
-
뭐 이번에 탈출이 가능할진 잘 모르겠는데 나처럼 우연의 연속이 계기가 된 사람이 얼마나 될까...
-
냥대 상경 0
답만 틀리거나 2번에 약수 하나 빼먹은거 과정은 다 맞았는데 부분점수 주나?ㅠ
-
도대체 사랑이 어떤거길래
-
대학들이 하고 싶다고 할 수 있는게 생각보다 없음 15
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
-
부산시 현역 1
수필 3합4 과탐1개 250명 정도 맞췄대요.. 이 중에 내신 나보다 높은 애들은...
-
ㄷㄷㄷㄷㄷㄷ
-
답안지 걷는데 다들 3문제 다 꽉 채워있었음 오히려 1번에서 판가름날듯
-
근데 이거 변표는 작년기준으로 계산하는거임??
-
지듣노 2
ほら あなたにとって 호라 아나타니 톳테 봐, 너에게 있어서 大事な人ほど...
-
파경 쓴사람 0
다 맞으신분?
-
윤도영 갬성으로 해야 하나요? 대충 들어보니 쉽지않은 성적대긴함
-
일단 저는 19군번 특기시험 전투지원, 사무관리 한자리수 등수 항공정보운영 군수해서...
-
냥대 상경 3번 17
점화식 어떻게 푸셨나요 다들 한양대 수리 논술 인터칼리지 상경
-
작년에 정시로 연세대 공대 입학한 ‘일개’ 학생이지만 여러 부분에서 연세대 입학처에...
-
파경 인칼쓸걸.. 싯팔!
-
물론 채점결과 나와봐야겠지만 이제 거의 안변하던데
-
확통을 잘하긴 하는데 실수가능성도 있고 표점이 너무 낮아서 바꾸려 함 2사탐이고...
-
77/27맞나여
-
논술 출발 0
칙칙폭폭
-
출처:한국교육개발원 인하대 과기대 아주대 가성비가 좋네요! 인하대는 이공계 비율이...
-
ㅎㅇㅌ 전 걍 혹시나 해서 보러감 ㅎ
-
무난하게 젤리케이스? 뭐 살지 모르겠넹
1번 보자마자 f=px(x-a),f'(a)=1이라서 f=1/ax(x-a)로 바꿧네요
결과적으로 그렇게 되기는 하는데 a=0, 1인 경우도 점검해 보는 것이 맞습니다.
1번같은 문제는 어떤 식으로 풀어나가야 하나요?
일단 a=0일 때, a=1일 때, a>1일 때로 상황을 구분하여 살펴볼 수 있습니다. 각각의 케이스에서 함수 g(x)가 미분가능하도록 만들어주어야 합니다.
자명하게 미분가능한 구간은 건드릴 필요가 없고, 미분가능하지 않을 수 있는 점들을 확인하여 미분가능하도록 만들어주면 됩니다. 예를 들어 "a=0인 경우 함수 |x|{f(x)-1}이 x=0에서 미분가능하므로 f(0)=1이다"처럼 함수의 결정에 필요한 정보를 확보할 수 있습니다.
참고로 a=0일 때는 극소가 한 번만 나오고, a=1일 때는 미분가능한 함수 g(x)를 만들 수 없고, 정답은 a=5/3인 상태에서 나옵니다. a의 값을 구하면 함수 f(x)의 식을 미지수 없이 작성할 수 있고, 함수 g(x)가 x=1에서 연속임을 이용해 b의 값까지 구할 수 있을 것입니다. 이렇게 구한 g(x)의 도함수를 이용하면 조건에 맞게 두 번 극소가 나오는지, 두 극솟값 중에서 어디가 최소가 되는 포인트인지 알 수 있습니다.
감사합니다! 그럼 혹시 a=0,1일때 기준으로 나누는 이유는 x, |x|, (x-1) 때문인가여?
|x|와, 함수 g(x)의 식이 x=1을 기준으로 달라진다는 것 때문입니다