[서울대 수교과] (불연속)x(연속), 연속함수=0이어도 불연속이라고?
-이전 칼럼 모음
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수I 삼각형 https://orbi.kr/00062038781
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(1편) https://orbi.kr/00062106944
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(2편)https://orbi.kr/00062139886
[서울대 수교과] 함수의 연속, 정의역이 핵심이다. https://orbi.kr/00065494895
안녕하세요! 저는 전교꼴찌 하다가 서울대 두 번 들어온 신동성 이라고 합니다. 오늘도 수학칼럼으로 돌아왔습니다!
오늘은 함수의 연속 2편입니다.
불연속함수와 연속함수의 곱함수의 연속성, 즉 간단히 말해서
(불연속)x(연속)의 연속성은 함수의 연속 단원에서 매우 자주 나오는 주제입니다.
그럴만 한 게,
두 연속함수는 더해도, 빼도, 곱해도, 나눠도(분모가 0이 아니라면) 무조건 연속이고,
두 불연속함수는 더하기, 빼기, 곱하기, 나누기 모두 직접 해봐야 하며,
불연속함수와 연속함수는 더해도, 빼도 무조건 불연속입니다.
그렇지만 (불연속)x(연속)은 연속이 되기 위한 아주 특별한 조건이 있어서, 그 조건만 체크하면 되죠?
많이들 알고 계시듯 그 조건은 바로, "불연속함수의 불연속점에서 연속함수의 함수값 = 0" 입니다.
그렇지만 이 조건은 사실 필요조건이기는 하지만 충분조건은 아니에요.
즉, (불연속)x(연속)에서 연속함수가 0임에도 불구하고, 곱함수 전체가 불연속일 수 있다는 거죠.
1. (불연속) x (연속) = (연속), "불연속함수의 불연속점에서 연속함수의 함수값 = 0"
우선은 혹시라도 저처럼 공부를 늦게 시작하신 분들을 위해, 이 내용부터 짚으며 시작해봅시다!
우선 (불연속) x (연속)의 간단한 예시를 살펴볼까요?
이렇게, 불연속함수 f(x)에 어떤 함수를 곱하냐에 따라, (불연속) x (연속)이 연속이 되기도 하고, 불연속이 되기도 하죠?
그런데,f(x)가 불연속인 x=1에 대해
곱함수가 연속인 위에서는 g(1) = 0이고
곱함수가 불연속인 아래서는 h(1) =/=0 임을 확인할 수 있어요.
눈치빠른 분들은 이미 아셨겠지만, (불연속) x (연속)이 연속이 되기 위해서는
불연속함수의 불연속점에서 연속함수의 함수값이 0이어야 해요.
가령, 불연속함수의 서로 다른 좌극한과 우극한에
연속함수의 같은 값을 곱해서
곱셈 결과가 같아지려면
곱하는 값이 무조건 0이어야 하지 않을까요?
수식으로 표현하자면,
이처럼, x=(알파)에서 불연속인 함수에 연속함수 g(x)를 곱해서 연속이 되려면,
연속함수의 함수값이 0이 되어야 함을 알 수 있어요.
그래서, 가령
이런 문제를 만나면
f(x)는 x=1에서만 불연속, 나머지에서는 무조건 연속
g(x)는 모든 실수 x에서 연속이므로
f(x)g(x)가 x=1에서만 연속이 되면 되고,
이때 (불연속)x(연속)이므로
g(1)=0
=1+k
-> k=-1
이렇게 결론을 낼 수 있어요.
수능이나 내신에 아주 자주 나오는 성질이니, 잘 기억해두세요!
2. (불연속) x (연속), 연속함수 = 0 이어도 불연속이라고?
이제 오늘의 메인 주제입니다!
위에서 말씀드린 내용까지는 모두들 알고 계실 거에요.
그렇지만, (불연속)x(연속)에서
불연속함수의 불연속점에서 연속함수의 함수값=0임에도 곱함수가 불연속일 수도 있어요.
그게 어떻게 가능하냐고요?
바로 이렇게요.
어떻게 된 일일까요?
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수에서는
연속함수 = 0 임에도 불구하고
곱함수의 극한값이 존재하지 않을 수 있기 때문이에요.
바로 위의 예시가 딱 이 경우죠.
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수 f(x)에 대해,
불연속함수 f(x)의 불연속점 x = 1에서 연속함수 g(x)가 g(1) = 0임에도 불구하고
곱함수의 분모에 여전히 (x-1)이 남아있어서, 곱함수가 무한대로 발산해버리는 것이죠.
그렇다면, 곱함수가 발산하지만 않으면 연속이 될까요?
이 예시에서는, 연속함수 g(x)에 (x-1)을 하나 더 곱해줬어요.
그러면 곱함수 f(x)g(x)가 x=1에서 1로 수렴하네요.
그러나, 극한값과 함수값이 달라서 여전히 불연속이 되었습니다.
(x-1)을 한 번 더 곱해보면 어떨까요?
드디어 연속이 되었네요.
눈치채신 분들도 있겠지만, 극한값 = 0이 되어야만 연속이 돼요.
왜 그럴까요?
이렇게 결론낼 수 있겠어요.
따라서, (불연속) x (연속) = (연속) 이려면,
단순히 "불연속함수의 불연속점에서 연속함수 = 0" 뿐 아니라
"곱함수의 극한값 = 0" 이 되어야 하고,
그러기 위해서는
"0을 만드는 인수를 곱함수의 분자가 분모보다 더 가져야" 하겠죠?
마지막으로, 이 개념을 활용해서 아주 빨리 풀 수 있는 문제를 살펴보고 마치겠습니다.
2021학년도 고3 7월 모의고사 12번입니다!
쉽죠?
이상입니다!
그리고 오르비학원에서 강의 진행합니다!
도형 관련 무료특강
수학II 미분 관련 무료특강
수학II4주짜리 개념+기출 특강
https://academy.orbi.kr/gangnam/teacher/464
많이 관심가져주시면 감사드리겠습니다 헤헤,,
공부에 도움이 되었다면, 추천팔로우댓글 많관부!!!!!
다음 칼럼 주제 추천이나 관련 질문 쪽지, 댓글도 아주 환영합니다!!!
수학 외적인 것도, 공부 외적인것도 ㄱㅊ습니당
이상입니다!ㅂㅂㅂ~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10시까지 만나자해서 1시간 지하철 타고 갔더니 지금까지 연락 안 봄.. 흔한 케이스인가?
-
아가 기상 6
안뇽안뇽
-
여럿 있다 남녀 상관없이 섞여 있다 그들도 알고 있었으면 좋겠다
-
실채점 3컷 가능할까요? ㅜㅜㅜ
-
숲속에서오두막짓고혼자들어가살고싶음 그냥뻘생각임
-
물론 꿈에서 지디랑 태양이랑 같이 밥 먹고 있었는데 ㅅㅂ 이게 꿈이라니
-
ㅈㄱㄴ 따뜻함이 필요해요 딱히 잘한 건 없지만 칭찬 암거나...
-
다른강의들은 쓰레기통이 옆에 있어서 누르면 없어지던데 왜 얘네만 없지
-
보면 배꼽 계속보게되는데 민폔가요
-
오늘의 아웃핏 제가 좋아하는 게임 굿즈에오
-
영어 올리기 0
안녕하세요 중3 학생입니다 제가 고3 모의고사나 수능을 풀면 항상 89 90 91...
-
그냥 시간 때려박아서 풀어야 하나요.. 익숙해지는거 만으로는 시간 단축에 한계가 있는것 같은데
-
친구 만나야하는데요… 혹시 아신다면 답변 부탁드려요ㅠㅠ
-
이번에 둘다 안정으로 쓸 성적 나왔습니다 집은 수도권이라 가천한이 위치는 압도적으로...
-
더워 죽겠네
-
둘 중 한 명과 사귀어야 한다면?
-
군수생 달린다 3
수학공주 달린다
-
7연승+5점차 클린시트 대승 ㅅㅅ
-
이제 2학년되는 정시파이턴데 모고는 보면 88-92나오는 어느정도 상위권...
-
으흐흐 할 일 있을때 오리비 표정이랑 딱 맞물려서 쓰기 좋음
-
소름돋아
-
네이버 뉴스? 유튜브? 인터넷커뮤?
-
수학 표점 2점 깠는데, 진초면 괜찮아 보임? 서강대
-
여기서 어떻게 중심각이 90도인걸 알수 있나요?
-
벌써 12월이당 2
시간 빠르네 ,,,
-
칸타타님 글을 모두 정독해봤는데 논리적 설명이 부족한 거 같아 반박한다 칸타타님은...
-
전 딱히 고등학교에 미련 없어요 비록 설대의 꿈은 날아갔지만 사실 성적부터 부족한...
-
올리브영에서 화장품 마케팅하면서 몸고생 상대적으로 덜한 남자로 살기 vs 먼지...
-
너말이야 너
-
고공의 꿈은 사탐런으로 날아가고... 설사과의 꿈은 cc로 날아가고...
-
ㅈㄱㄴ 국어 98 수학 96 영어 78 국사 5등급 물1 47 화1 50 어디가 나음?
-
제곧내입니다 지구 쌩노베인데 1년만에 수능 50 가능한가요? (원래 화학햇엇음)
-
교재패스를 살까 하다가 저걸 과연 다 들을수 있을까 싶어서요
-
생일 기념으로 덕코 좀 주세요 (덕코 줍줍) 대신 아가 시절의 저를 대신...
-
어디가실 거임?
-
ㄹㅇㅋㅋ
-
사실은 매번 수능마다 표점은 다 다르겠지만 일반적으로 물1,화1은 표점이 낮고...
-
특정 키워드 검색했는데 그 키워드 들어간 뻘글을 수십개 쓴 사람때문에 너무 거슬림...
-
수학 교사한명이 수1 수2 미적 확통 기하 다가르치나요 아니면 선택과목마다 담당교사가있나요??
-
더치페이가 거지근성이라 하는데 그럼 얻어처먹기만 하는 마인드를 가진건 대체 뭐임?...
-
좋은아침 13
아침이되니한결 마음이편해요
-
타코야끼 먹을거임
-
뇨 체를 만나고 달라졌음뇨 이제 나도 부드러운 사람임뇨
-
안냥 3
반가웡
-
미적틀 96은 1
백분위 100 가능성 아예 없는 건가.. 9평 100도 백 99 주고.. 이게 뭐야 ㅠㅠ
-
그리고 수학 1등급 이상 정도 되면 걍 수능 버리고 연논만 올인하는게 나을거같음...
-
흠
-
과외하고싶어요 0
피차 같은 미성년자한테 과외를 믿고 맡길 학부모가 존재할지... 뭐야 나도 고수익 알바시켜줘요
-
그분 근황 궁금한데 닉네임이 생각안남.. 강x 리뷰글 쓰시던 분이였는데
첫번째 댓글의 주인공이 되어보세요.