작수 22번 출제의도는 그래프 풀이 (오피셜)
19 수능 출제의도.pdf
20 수능 출제의도.pdf
21 수능 출제의도.pdf
22 수능 출제의도.pdf
23 수능 출제의도.pdf
평가원 공식 홈페이지를 돌아다니다가
https://www.suneung.re.kr/main.do?s=suneung
수능 교육과정 근거 (이하 출제의도) 를 공식적으로 밝히고 있었다는 것을 이제 발견했네요!!
이 문제, 직관이 좋지 않거나 저처럼 머리가 잘 굴러가지 않는 분들을 위해
이렇게 직접 g(x) 식을 작성해 (나) 조건 적용하고 (다) 조건 마저 써서 답 내는 풀이를 권해드리곤 했었는데
평가원에서 공식적으로 '그래프'와 '평균값 정리'라는 워딩을 박아버려서... 여기에 초점을 둔 풀이를 우선적으로 강조하는 것이 적절하겠다는 생각이 들었습니다.
물론 '근거'일 뿐 다른 풀이를 제한하거나 지양하지 않기 때문에 (공식 해설이 없는 점 등에 근거) 다양한 풀이를 익혀두는 것이 좋겠다만
2019학년도 이후의 수능 시험지들은 평가원 공식 출제의도에 맞추어 공부하는 것이 학습에 도움이 될 수 있겠습니다!
이전 자료들은 없는 것인지 내린 것인지 못 찾겠습니다, 그럼 연휴 마지막 날 다들 파이팅하시고 내일부터도 다시 파이팅입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
삶은... 5
달걀
-
완축사 완독소 나와서 지금 쇼진 완축사 완독소 실코로 연승중이다 질문 받는다
-
1월 시작하고 지금까지 강기원 어싸 1~3주차 2회독 4주차 1회독 스블 수1...
-
크림빵먹어야지
-
제가 참 어려서 받은 복 중 하나가, 부모님 덕분에 미국 유학을 1년 간...
-
경제 표점이 진짜 좋다고는 하는데 아무래도 인원 적고 고여서 해보고 아니면 바로...
-
찬양하라 비디디
-
의대 지망하시는 분들 왜 의사가 되고싶음? 그냥 연봉? 의대 공부량+인턴레지 생활...
-
화작 만백만 100이었으면...
-
바이바이 9
-
어느순간부터 귀찮아서 안하게 되는
-
며칠전에 올렷는데 행방이 묘연함
-
대황디디 사랑한다 곽보성 사랑한다 비디디
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
과연어떨까
-
님들이 열쇠를 사는거임
-
밤새실분 있나요 2
오늘은 놀러와서 심심해요 같이 놀이ㅏ요
-
아 ㅋㅋㅋㅋㅋㅅㅂ
-
장소는 신촌/관악/흑석의 중간인 노량진/합정/홍대 정도로 할거에요 진짜 한다 했을...
-
늦었지만 연세대 합격 인증합니다. Agent K님 만났는데 상담내내 믿음직스럽게...
-
인스타 본계 4
어제 새벽에 털림 링크 공유했는데 아이디가 나오더라
-
개강 전에 해외여행 한번 갈 거 같은데 아이폰 없는 해외여행? 이거 좀 쉽지않음 ㅠ
-
베이커리 카페 갔는데계산하면서 인사했더니갑자기 사장님이 서비스로 빵을 주셨음요역시...
-
진짜 인스타 본계를 깐다고?? 부끄러운데 난 ㅋㅋㅋㅋ
-
60%를 넘기지를 못하네 ㅋㅋㅋㅋㅋ 올해 좀 더 돌았으면 좋겠다, 4년내내 60 아래는 너무 하잖아
-
bappul___hwa2 <<--- 이거로 팔로우 걸어줘잉~
-
치타는 달린다!!!!!!!!
-
아씨..30분전인데두개다실수로봄 일단 바로 차단했는데 비활도 해야하나? 어케해야돼...
-
현재 3등급이에요 수특 영어 굳이 안 풀어도 된다고 듣긴 했는데 수특 수완 안에...
-
제6공화국 출범 이후 첫 계엄령 선포하기 (클리어) 6시간 만에 계엄 해제하기...
-
처음엔 역했는데 먹다보니 ㄱㅊ은거같기도하고
-
C E X 15
라면 3봉지 한우 막걸리 여친
-
세젤쉬 수1 수2 미적 확통 + rpm 수1 수2 미적 이렇게 3모전까지 끝내려고...
-
서강대는 전장임
-
기왕 이렇게 된거 오르비언 정모나 한번 하죠?
-
지듣노 0
-
딸딸이나 ㅊ
-
그렇게 숫자 커보이지 않으면 7ㅐ추
-
[속보] 검찰, 윤석열 구속 기소…내란 우두머리 혐의 73
검찰이 내란 우두머리(수괴) 혐의로 윤석열 대통령을 구속 기소했다. 헌정사상 현직...
-
막말로 현직 대통령도 영장 쳐서 구속기소를 한 판인데, 야당 대표가 본인이 걸려있는...
-
대충 본인이다 싶으면 댓글달아~
-
술 사옴 5
닷사이 23 흐흐
-
학생 대부분이 과고 조기졸업+영과고 졸업 현역이고 정시로 엄청 조금 뽑아서
-
물1 434 생1 123 현역 재수 삼수 순서로 ㅇㅈㄹ인데 아 쓰고보니 또...
-
그래서 지젤은 sm인가요?
-
학원에서 수학 풀때 폰에다가 남자 사진 띄어두고 푸는데 뇌 활성이 되는 느낌이 나요
-
물2할까요 11
가슴이 시킴 참고로 화작확통정법입 목표과는 정치외교아니면 자연,공대 가고싶음 목표는...
-
https://www.donga.com/news/Series/7000000000070...
-
생폰 1년 정도 썼는데 14
요즘 폰들 생각보다 단단하다는 생각이 갑자기 들었음 뒷유리는 기스 1도 없고...
페이지가 없다는데요..? ㅜㅜ
https://www.suneung.re.kr/main.do?s=suneung
들어가셔서 알림마당 > 공지사항 > 검색어에 '근거' 입력하시면 확인하실 수 있습니다! url 자체를 클릭하여 들어가는 것은 인위적으로 막아둔 것인지 아님 오류인 듯하네요
이러면, 그래프 풀이가 엄밀하지 않다던 몇몇 강사분들은...
정병훈
좋아요 노무 많네
병훈쌤 싫어하는거 아닙니다 ㅋㅋ
22번 수식풀이도 열심히 봤어요
그러한 말씀을 하셨던 강사 님들께서는 어떤 풀이를 지향하셨는지도 궁금하네요!
이제 평가원 자료 출제진이 쓰는거 아니라 의미없다도르 시전할예정 ㅋㅋ
전부 꽁꽁 숨기는줄 알았는데 교육과정 이수기준에 대한 부분만 맞춰서 알려주긴 하는군요 ㅋㅋㅋㅋㅋ..
저도 문항만 출제하고 해설이나 출제 방향 등은 따로 공개하지 않는 것으로... 가끔 가다가 이전 기출 문항 갖고 수능 소개 자료에 소개할 때 조금씩 드러내는 것 외에는 이렇다 할 것이 없다고 알고 있었는데 저렇게 명시된 공식 자료를 확인하니 새롭고 좋네요! 참고하여 문항들 다시 분석해봐야겠습니다
첨 알았네요
저도 오늘 알았습니다! 참고하기 좋다고 생각해요
주어진 문항이 어떻게 만들어졌는지, 왜 만들어졌는지를 이해하는 것이 문항을 어떻게 해결해야하는지 깨닫는 데에 큰 도움이 된다고 생각하고 있습니다. 그래서 수험생일수록 문제의 의도를 파악함과 동시에 다양한 풀이를 지향하는 태도를 함께 지닐 필요가 있다고 생각합니다.
물론 현장에서는 어떻게 해서든 답만 맞추면 그만이긴 합니다 ㅋㅋㅋㅋㅋ
이해못한 통통이들은 확추...
그래프, 평균값 정리 적용하는 풀이는 유튜브에 시각적으로 이해하기 편한 영상들이 많습니다! 수식 풀이는 (다) 조건에 f(0)=-3 이용하여 f(x)=x^3+ax^2+bx-3 (a, b는 실수) 정도로 설정하고 (가) 조건을 [f(x)-f(1)]/(x-1)=f'( g(x) )로 정리하여 다 대입해보시면 됩니다.
(혹시나 글 이해 못하신 학생 분들을 위해 댓글 빌려 남깁니다)
어허 호형훈제를 음해하려는 평가원의 계략이다
정병훈T 해설 제가 사랑합니다... 1711가30이나 221114 수식 풀이 보고 사랑에 빠져버렸습니다
그래프 풀이랑 식풀이랑 걸리는 시간이 다르긴 하더라고요
그래프 풀이 지향이 맞다고 생각합니다!! 다만 현장에서 그래프 그려 상황을 파악하기 어려운... 저와 같은 수험생 분들께는 수식 풀이도 권해드리고 있습니다. 1711나30, 221112, 2406미28 등을 수식 풀이로 밀어버리는 훈련으로 다루어두면
231122도 수식 풀이로 밀 때 현장에서 더 빠르게 풀렸을 것이라고도 생각합니다
오 이거 참고하기 좋다!
그쵸! 22, 23 수능 정도라도 참고하여 학습해두면 24 수능 대비에 도움 될 것이라고 생각하고 있습니다
문제결과물이 어찌되었든간에 출제의도는 그래프해석이었다~..
이거지 ㅋㅋㅋㅋ
평가원 학습방법 안내에 가능한 선에서 최대한 해설 하더라구요
출제 근거에 함수의 그래프의 개형을 그릴 수 있다, 함수에대한 평균값 정리를 이해한다
(가),(나) 조건에서 f(x)와 g(x)의 관계를 파악할 수 있고 (다)조건에서 조건을 만족하는 함수 f(x)를 구할 수 있다라고 해설
평가원 공식 홈페이지 자료마당>수험자료에 나와있는 '2024학년도 대학수학능력시험 학습 방법 안내' 76페이지 부분 말씀해주신 것이죠? 함께 살펴보면 학습에 도움 될 것이라 생각 들더라구요
그리고 개인적으로 f(x)의 정체가 y= (x-2)³+5라는 매우 간단한 함수라는 점도 의도적으로 이렇게 한걸까? 생각하는데
접선에 대한 차이함수로만 계산하는 것과 함수 f(x)를 구하는데서 계산 난이도의 차이가 극명하게 생기는 듯하네요
파일 속 출제 의도에 맞는 정석 풀이는 f(x)-(px+q)=(x-1)(x-5/2)^2로 두고 (가) 조건으로부터 f'(1)=f'(g(1)) 얻어 g(1)=3 확인하고 (다) 조건에서 f(0)=-3과 f(3)=6 통해 p, q값 결정하는 것이 아닌가 생각하고 있습니다!
예시로 그래프 그려 상황 파악할 때 주로 f가 서로 다른 두 극값을 지니는 상황을 생각했을텐데 실제 결과는 어떤 상수함수에 삼중근 가지며 접하는 형태라 신기했어요
정병호는 저런거 순진하게 정말 교수가 쓸거라고 생각하냐고 어차피 부하직원 잘 모르는 사람들이 여기 단원이 이거니까 이거 쓰는거라고 대충 단원명만 알려주는거라던데
정병호 선생님께서 그렇게 말씀해주셨었군요! 알려주셔서 감사드립니다. 그래도 '그래프'와 '평균값 정리'라는 워딩이 '합성방정식'이나 '합성함수' 해석 대신에 들어와있다는 점이 의미 있다고 저는 느꼈습니다
평가원 교수님들이 쓸 가능성이 높은게 오류시비 생길때 대비해서 분명 저런 자료들 작성하는 것으로 알고 있습니다. 정리는 실무자가 한다고 해도 말이죠...
미궁의 문 사건 이후에 출제 하신 분이 직접 가서 출제 의도와 근거 같은것들 정리해서 올린게 시초로 아는데
그건 정병호 qna가서 달아보시는게
???: 진짜로 교수가 쓴거면 그 교수가 실력이 없는것
강사하실기 아니고 교수 하셨어야 됐네요 ㅋㅋㅋㅋ
2019학년도부터 공개하기 시작했어요
알려주셔서 감사드립니다, 어떤 계기가 있었다면 무엇이었을지 궁금하네요
https://www.topdaily.kr/articles/22479
감사드립니다!! 지진 연기가 18수능이었군요... 교육과정 외 출제 논란을 줄이기 위한 명시가 목적이었군요