3등급에서 1등급이 될 수 있었던 방법
1등급으로 올라가보자!.pdf
(수학 문제를 풀 때 어떤 사고과정이 있기에 필요한 발상을 할 수 있는지를 알려주는 책을 출판 준비중에 있습니다. 이에 대해 수험생들의 반응이 궁금하여 글을 씁니다. 만약 출판이 확정 된다면 사익을 위한 무단홍보로 판단되기에 글을 삭제할 것입니다.)
안녕하세요
저는 수험생활을 할 때 꽤 오랜 기간 동안 3등급에서 벗어나질 못했습니다. 무엇 때문에 성적이 안오르는지 많은 고민을 한 결과 어떤 한 가지를 깨닫고 성적이 급격히 상승하여 수능에서는 1등급을 받았습니다. 그리고 학원 조교알바를 하면서 저와 같은 어려움을 겪는 수험생들을 많이 보고 ‘나만 이런게 아니였구나’ 라고 생각했고, 이 부분을 알려드리기 위해 글을 써봅니다. 일단 제가 생각하는 3등급쯤의 수험생의 특징입니다.
이들은 의외로 문제풀이량과 스킬같은 것들은 충분합니다.
하지만 1등급과 달리 그들의 가장 큰 문제점은 식 변형, 문제해석 같은 발상적으로 느끼는 부분들을 실전에서 능동적으로 펼쳐내지 못하는 것입니다. 문제의 해설지나 해설강의를 보면 이해는 하지만 문제를 풀 당시에는 본인이 스스로 생각해내지 못하는 것이죠.
풀이의 근거를 모르기 때문에 그냥 예전에 맞춘 문제와 비슷해 보여서 그 기억에 따라 풀어낸 것이라 그렇습니다. (풀이를 암기한 것이 잘못됐단 게 아닙니다. 그 이유를 모르고 암기한 게 잘못이죠.) (어떤 개념을 외울 때 원리, 과정을 이해하고 암기해야 하는 이유와 똑같습니다.)
때문에 유형화를 해서 알고리즘을 외워도, 스킬을 배워도 그걸 쓰는 상황인지조차 모르고 틀립니다. 아래 질문들에 대답해 보시길 바랍니다.
1. 올해 6평 미적분 28번에서 왜 양변에 1을 더했는지, 왜 루트가 나옴에도 불구하고 f(x)에 대해 정리하는지 설명할 수 있나요?
1. 작년 수능 15번 수열문제를 보면 3의 배수를 기준으로 케이스를 나누다, 왜 마지막 과정에서만 갑자기 나머지를 기준으로 케이스를 나누는지 아시나요?
1. 함수가 나오는 문제의 해설을 보면 복잡한 함수를 하나의 함수로 치환할 때가 있습니다. 왜 치환하는지 결정적인 의도를 아시나요? (“쓰기 편하려고”는 불완전한 답변입니다.)
위와 같은 질문들에 명확하게 답변할 줄 아셔야 문제를 풀 당시에 발상들을 떠올리실 수 있고, 본인이 풀이를 능동적으로 이끌어 갈 수 있습니다. 풀이의 근거를 알아야 한다는 말이죠.
또한 틀린 후 해설을 본다 할지라도 해설에서의 풀이 자체를 뜯어내어 더 많은 정보를 공부할 수 있고, 왜 해설에서 그 방향으로 문제를 풀었는지 이해하고, 공감할 수 있습니다.
위에서 설명한 부분들을 어떻게 기르는지는 자세하게 알려드리기 위해 글을 쓰기 결심했고, 책의 일부를 첨부파일로 올렸습니다.
게시글에 쓰기엔 볼륨이 커서 첨부파일로만 올리는 점 이해 부탁드립니다. 읽는 분들의 선택과목이 다를 수 있기에 공통범위 중 수1 범위만 고려하여 글을 썼습니다.)
이러한 내용을 담고 있는 책이 출판되면 어떨지 궁금하기에 글을 써봤습니다. 다 읽어 본 후 아래 투표 한 번 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9500원 할인받음 ㅎㅎㅎㅎ
-
지공 질문받아요 0
이제 상병인데 공익이신분 궁금한거 알려드림
-
작수3인데 두달 유기했더니 수학 다까먹었네요 재종 개강까지 3주정도 남았는데...
-
지나는 사분면 개수가 2개가 되도록 하려면 f(x)그래프랑 f(t)랑 한점에서...
-
홍머 사람 지짜많다 18
와오
-
친구 수집완료
-
가지고 계신 분 보여주실수 있나요?
-
푸앙이 모음집. 5
-
Loading..
-
전출제한이있음?
-
전한길이 무슨 이득을 보려고 자기 이름 팔면서 저러겠음. 진짜 애국자니까...
-
히히기분조와
-
길잃엇어 10
여기 얻디야..
-
이거 너무 좋다 바론이 계속 추격해오지만 담원의 4연승으로 계속 더 멀리 도망가는중
-
대한길 ㄷㄷ
-
EBS 국어 연계의 중요성은 다들 알 것이다 영어의 중요성이 얼마나 감소했는지도 다...
-
응시과목 물2 지2 언매 미적국어 낮은2수학 100물2 50 지2 50영어 4궁금합니다
-
성대 에너지 0
성대 에너지학과 추합 얼마나 돌까요?
-
그러면 국어가나형도 이정도의 격차가 있었겠죠? 네? 문과는 국어도 못한다고요? 에이...
-
무조건 메인글을 갈 수 있는 제목을 몇 개 알고 있음 9
다만 여백이 부족해서 여기 적진 않을 거임...
-
개교 이후로 서울대 쭉 없다가 작년에 1명 올해 2명 메디컬은 최저 다 못 맞춰서 0명임 ㅋ ㅋ
-
김동욱T 현강 0
지금 시대에서 일클 듣는데 일취월장 하면서 시대컨은 하나도 안하시고 바탕만 하시나요?
-
이런거 모아놓은 교재 있나요? 나중에 출시하면 구매하려구요 현강교재 제외
-
예비고3이고 모고는 계속 2,3등급 떠요 그런데 고전시가, 비문학 이런거 지문에서...
-
경찰대 ㅇㅈ 3
기부니가 좋네요 질문은 환영합니다!
-
3월 되기 전까지는 합쳐서 하루에 기출 한 시간만 돌리고 미적 6시간 + 지구 2시간씩 박아야지
-
금수저 인증 5
오늘 저녁 치킨 먹을 거임
-
f(x)에서 x가 0이 아닐때의 식에 limx->0을 하면 모든 항은 0/상수...
-
경희대 붙었는데 0
2월 납부일까지 아무것도 안해도되는거맞나요..?
-
ㄴ제 친구임.. 1
ㅈㅅ..
-
차사면 단점 0
주차비가 꽤 나감 요즘 꼭 무료주차 좀 부족하게 줘서 주차비 내야됨
-
담편 궁금하면 팔로우 ㄱㄱ 솔직히 전 머리가 빡대가리라 "이 유형에 대한 출제...
-
뭐 더 말이 필요하나?
-
본인은 이성적으론 고대 > 연대인데 (문과 issue) 심리적으로는 연대가 좀 더...
-
2월에도 사람 많나? 2종 보통으로 딸껀데 2주면 충분하죠?
-
2022년 고1 3월 국어 만표 167 만점자 0명 87점까지 백분위 100 1컷 76..
-
재수 0
목표는 대기업이고 지방 국립대(부경대)에 합격했는데 취업률이 좋지 않아서 가기가...
-
비상!!@!
-
2연속 파토 7
이건 귀하네요..
-
페이커 다음으로 좋아했는데......... 애증이 뭔지 알려준 사람은 최우제가 처음임
-
노래방 마려움 밥 먹고 갈려구용 잔나비 빅뱅 등등 좋아함뇨
-
19수능 vs 25수능 32
19 수능 당시 나형 한지 세지 평백 83 25수능 화작 기하 사문 지구1 평백...
-
정신병이 꺼졋다 켜졋다함 ㄱㅊ다가 존나 심해짐
-
덕성여자대학교 약학대학 2025 신•편입생 카페 안내 1
약학대학 2025 신•편입생 카페 안내 안녕하세요, 덕성여자대학교 약학대학 제44대...
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
자작은 아니에용
-
흠...
-
한달 45000 월화수목금
와 미친 저 보라고 쓰신 글인줄 알았어요
책 내시면 무조건 사겠습니다
바로 구독 박았어요
도움되시면 좋겠네용 ㅎㅎ
사랑해요
..? ㅋㅋㅋ
저랑 좀 소름 돋게 생각이 비슷하셔서 놀랐네요ㅋㅋㅋ 저는 이런 방향성을 위해서 제가 구현할 수 있는 풀이들의 장단점을 분석하거나, 혹은 문제를 푸는 과정에서 케이스를 나누는 경우 문제에서 제시한 쟁점에 정말로 포커싱하고 있는건지 확인하는 단계를 거치는 것 같아요. (문제에서 요구하지 않은 필요 없는 케이스까지 너무 많이 나누면 비효율적이니까!) 그리고 세번째 질문의 답이 궁금해지네요. 저는 개인적으로 새로운 함수로 치환했을 때 훨씬 효율적으로 표현할 수 있는 조건이 있어서라고 생각해요. 예를 들어 f(a)=g(a), f'(a)=g'(a)라는 조건은 따로 표기하려면 애를 써야하지만, h(x)=f-g를 도입하면 h(a)=h'(a)=0이라고 바로 표현할 수 있는 것처럼요. 제 생각이 맞는지 궁금하네요
햇반님 아까 제 게시글에 답변 적어주신거 읽어봤어요! 이 글 보면서 느낀건데 아까 말씀해주신 해석이라는 게 이 분이 말씀하시는 거랑 같은 맥락인 것 같아요 댓글 남겨주신거 감사합니다 ㅎㅎ
오 제가 도움이 되었다니 영광이네요!! 같이 좋은 결과 냈으면 좋겠네요 아자아자
3번에 대한 답은 예시가 있으면 더욱 도움 될 거 같아서 예시를 추가해드릴게요 -xf'(x)+f(x) 라는 함수가 있다 칩시다. 저 상태 그대로 쓴다면 접선에서의 y절편의 의미로 해석한다거나, -f(x)/x 의 도함수의 부호 정도로 해석한다는 뜻이겠구요.(자세한건 문제의 조건을 봐야합니다.) 하지만 얘를 만약 g(x)라고 둔다면 위의 성질은 다 필요없고 그냥 베이직한 하나의 함수로 보다는 의미이죠. f(a)=g(a), f'(a)=g'(a) 이것도 두 곡선이 접한다 정도의 의미를 갖고있지만 h(a)=h'(a)=0의 의미는 x축에 접한다는 것이고 이건 하나의함수를 다룰지, 두개의 함수를 다룰지 정도의 차이가 있겠네요. 함수의 생김새와 문제 조건을 보면 하나로 둘지 두개를 비교할지 판단가능 할거구요. ㅎㅎ
생각보다 당연한 것일 수 있는데 무의식적으로 하는 것을 근거를 찾아 의식적으로 할 수 있어야합니다.
아 그렇군요! 그리고 여기서는 책 홍보해도 됩니다 선생님ㅋㅋ 불법홍보 이런건 아니에유
ㅋㅋㅋ 관심가져주셔서 감사합니다 ㅎㅎ