'모든'의 논리적 오류 | 6평 미적 28번
※ 6월 10일, 글 내용을 좀 더 상세하게 영상으로 풀어서 올렸습니다.
0
독해와 논리를 가르치는 이해황입니다.
이번 미적 28번 논란이 흥미로워서 짧게 글을 써봅니다.
1
실수 전체의 집합에서 연속인 함수 f(x)에 대하여
{f(x)}²+2f(x)+1이 x=1에 대칭이라면,
{f(x)}²+2f(x)+1 = {f(x)+1}²이므로
{f(x)+1}² = {f(2-x)+1}²이 성립합니다.
따라서 "모든 x에 대하여 f(x)=f(2-x) or f(2-x)=-2-f(x)"라고 할 수 있습니다.
그런데 이로부터 "모든 x에 대하여 f(x)=f(2-x) or 모든 x에 대하여 f(2-x)=-2-f(x)"라고 할 수는 없습니다.
2
"모든 사람은 남성이거나 여성이다."가 참일지라도
"모든 사람은 남성이거나 모든 사람은 여성이다."가 도출되지는 않습니다.
왜 그런지 바로 이해가 되는 분들도 있겠지만, 그렇지 못한 분들을 위하여
사람이 p, q 둘만 있는 가능세계1)를 살펴보겠습니다.
각주 1) 가능세계는 2019학년도 수능 국어영역에도 나왔고 PSAT/LEET에 모두 나온 적 있는 중요 논리학 개념입니다. 만약 이 개념을 잘 모른다면 가장 쉽게 이해하는 '가능세계' [두뇌보완계획100] 3분짜리 영상을 참고해주세요.
이때 가능한 세계는 아래 표와 같이 4가지입니다.
"모든 사람은 남성이거나 여성이다."는 w1, w2, w3, w4 모두에서 참입니다.
반면 "모든 사람은 남성이거나 모든 사람은 여성이다."은 w1(모든 사람이 남자)와 w4(모든 사람은 여자)일 때만 참이며 w2, w3일 때는 거짓입니다.
정리하자면, "모든 사람은 남성이거나 모든 사람은 여성이다."가 참이면
"모든 사람은 남성이거나 여성이다."는 참이지만, 그 역은 성립하지 않습니다.
3
논리학자들은 '모든'을 ∀으로, or(이거나)는 ∨으로 나타냅니다. ∀는 all을 뒤집은 것이고, ∨는 or를 뜻하는 라틴어 vel에서 가져온 것입니다. 참고로 and(이고)는 ∨를 뒤집은 ∧으로 나타냅니다.
지금까지의 논의를 기호를 활용하여 간결하게 나타내면 다음과 같습니다.
∀x(Ax∨Bx) ≢ ∀x(Ax)∨∀x(Bx)
구체적으로는 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx), ∀x(Ax∨Bx) ← ∀x(Ax)∨∀x(Bx)로 분리하여 생각할 수 있습니다.
4
2019학년도 LEET 추리논증에 이러한 변별을 묻는 문제가 나온 적 있습니다. 지금까지의 논의를 잘 따라왔다면, 아래 고난도 문제를 단박에 풀 수 있습니다. 핵심은 ㄷ입니다.
논리훈련이 되어 있지 않은 분들은 ㄷ을 적절하다고 판단합니다. 그런데 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx)이므로 ㄷ은 적절하지 않습니다. 즉, "모든 환자에게서 병원균 α와 β 중 적어도 하나가 검출된다"가 참이라고 해도, "모든 환자에게서 병원균 α가 검출되거나 모든 환자에게서 병원균 β가 검출된다"가 참이라고 할 수 없습니다. (참고로 정답은 ② ㄴ입니다.)
5
지적 호기심이 있는 분들을 위하여 양화사 분배에 대한 몇 가지 성질을 적어두겠습니다. 2에서 제가 표를 그린 것처럼 가능세계를 중복없이 누락없이 떠올려보면 충분히 혼자 이해할 수 있을 겁니다.
①∃x(Ax∨Bx)≡∃x(Ax)∨∃x(Bx)
②∀x(Ax∧Bx)≡∀x(Ax)∧∀x(Bx)
③∃x(Ax∧Bx)≢∃x(Ax)∧∃x(Bx)
④∀x(Ax∨Bx)≢∀x(Ax)∨∀x(Bx)
이때 ∃는 "어떤 ~가 있다"는 뜻으로, there exists에서 가져온 기호입니다.
참고한 자료
1. 2024대비 6월 모평 미적분 28번 대칭성 풀이의 논리적 오류에 대하여
2. 논리개념 매뉴얼5.0(이해황, 2023) (2의 설명은 이 책에서 가져옴)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수생인데 이번 수능 미적선택에 14,15,20,21,22,29 이렇게 틀렸는데...
-
작년에 카더라하던 것들 샀는데 다 올랐어서 재밌었음뇨
-
성적이 ky점수면 경찰대 고려해보셈 경찰대 졸업후 경제팀 필수근무2년이 로입때 꽤...
-
설마...
-
제곧내긴한데 실지원등수 15/330정도임 홍대 인자전 미술입시 하다가 인문정시로...
-
심지어 이번에는 내기억으론 꽤빠르게은테까지만듦
-
그냥 당하누
-
최저 2합 5 4
맞춘 사람 많을까요?
-
좀 보고 배워라 으잉?
-
요즘은기업알아보는것도귀찮아져서 걍지수추종이나살거같음
-
흐흐 점령 성공
-
원래 연의 면접공부할때 풀로 다들집중함? 3 4시간정도 게임했는데 아빠한테 뭐하냐고 꼽먹음
-
예전에는 주기적으로 피바람 한번 휘몰아치면 재르비 싹 썰려나가고 그랬는데 ㅋㅋㅋ...
-
집안 재력, 사업 수완, 대인관계, 외모 등등이 훨씬 중요함 공부와 학력은 아주 극히 일부일 뿐
-
탐구도 싹다 노베라치고 2026학년도 수능만 생각한다 할때 탐구는 사탐고르는게...
-
전글 댓글임
-
이 분 타율 개높네 10
나는 2할0푼1리인데
-
생윤이랑 같이할건데 둘중 뭐가 맞을까요 공부량 적고 표점 잘나오는과목이면 좋겟어요
-
단풍떨어지는데 예쁘네 10
바람이 얼굴쪽으로 강하지만 부드럽게 불고있고 단풍이 얼굴방향으로 나무에서 떨어져...
-
본인은 대졸 후 두번째 대학갈려고 지원함 여기서 알게 됐는데 점공있대서 엑셀...
-
ㅇ편도 기준
-
그런데 사서 뭐하지 크기랑 성능은 사긴데
-
흠흠
-
. 0
https://www.instagram.com/reel/DDD8OocBlfd/?igs...
-
88 갈리거나 88위일거같은데
-
워터밤 노출 레전드 10
?
-
흐흐
-
윤석열이랑 정부는 알빠노라서 말도 안먹히고 국민들 개돼지취급 계몽도 이제는 끗빨...
-
이제 12월인데 13
다시 공부 달려야겠다 운동도 열심히 해야지...
-
인생이망해버린 10
주식도 롤체도 운이 없다 건실하게 메이플 쌀먹이나 해야겠음..
-
머지
-
가격도 러셀코어가 대치러셀 반값이고 현강 컨텐츠 똑같이 주는데 대치러셀 가서도...
-
25수능 공통 3개틀인데 바로 n제부터 가는거 별론가요 1
11 21 22틀렸고 11은 아마도 마킹실수같아요 실전개념이랑 기출 둘 다 많이봐서...
-
안녕하세요 오달원입니다. 몇몇 분들이 디코 서버를 만들면 좋겠다는 건의를 남겨주셔서...
-
유효기간 길거나 없는걸로 자격증좀 따려는데요 Itq 컴활 2급 토익토플 (준비?)...
-
우리 옯붕이들은 걸을 때 조심해..
-
ㄷㄷ 어찌 이 누추한 곳에
-
ㅎㅇㅎㅇ 2
.
-
제가 친히 똥테로 바꿔드려야....
-
힝
-
햄버거먹을가흠 2
흠
-
부모님이 봐도 정말 열심히 했는데 대학 잘못간거면 너는 진짜 아깝다 1년 더해라...
-
아무리 봐도 쓸 게 없음
-
헤이헤이 4
코타에테 다레카이마센카~
-
나는버틸꺼니까
-
사내가 큰 일을 하려는데 사소한 문제에 사로잡혀서야 되겠는가
-
이 노래 댕 좋음요
-
인강 뭐들으셨나요
-
차라리 69평 실모 호머식채점 후 자랑하기가 더 재밌을거 같은데.
수학까지 잘하시는 국어 강사님...ㄷ
해설강의 찍고 편집할 때면 이 세상 다른 모든 것들이 흥미로워져서 큰일이에요 ㅎㅎ
제가 공부할때와 같은 모습이시군요..
x가 하기 싫을 때는
x보다 더 하기 싫은 것을 찾으면 좋더라고요. ㅋ
오 ㅋㅋ 써먹어 보겠습니다
그저 GOAT...
고맙습니다. :)
와 설명 진짜 잘하시네요. 이해가 쉽게 되네요
고맙습니다. PSAT/LEET 수험생들에게 하도 질문을 많이 받다보니, 자연스럽게 설명이 진화(?)했습니다. ㅋ
비트겐슈타인의 논리철학논고를 통해서 1차 술어논리에 대해 혼자 공부할 때가 떠오르는 글이네요. 잘 읽고 갑니당
재미있게 읽어주셔서 고맙습니다. :)
논고를 통해서 1차술어논리요?
대단하시네…
어찌보면 당연히 여자와 남자가 동시에 존재할수있다는 생각이 드는데 이걸 수학으로 !
집합과 명제를 좀 현란하게 확장해서 수능/PSAT/LEET를 가르치고 있습니다. ㅋ
쉽게 말하면 모든 사람이 남자이거나 여자일수 있다에서 "모든 사람은 남자" or "모든 사람은 여자"가 도출되진 않는다
네, 그리고 "한 명 뽑아봤더니 남자라고, '모든 사람은 남자'라고 단정해서도 안 된다. " 정도를 추가할 수 있습니다.
요새 수학강사는 국어도 잘하네
오르비 신규 수학 강사 이해황입니다. 잘 부탁드립니다.
10대 때 로즈마리 수열을 투고한 적 있습니다.
https://oeis.org/A026644/a026644.html