2468 N제 수2 (N제 형식 ver.) 배포!
2468 n제 (수2).pdf
안녕하세요!
2468 N제 수2 (N제 형식 ver.) 배포합니다!
올렸던 수2 N제의
N제 형식 ver. + 문항 추가
입니다!
(이름이 2468 N제인 이유는 포만한 닉이 2468이라서 입니다)
풀어주신 모든 분들께 감사드리며
곧 있을 6평 및 수능까지 진심으로 응원합니다!
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그럼 0.5cm 내리겠네요. 걱정 노노~
-
여르비분들 질문 11
선물로 보내주려고 고른건데 디자인 어떤가여?
-
ㄹㅇ 재능충인가 1
맵만 외우면 ㄹㅇ 괜찮을지도
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
어쩌자는거야
-
그래프풀이로는gx가연속이라는걸보장할수없습니다즉식풀이를하여야하는데이때근의송식을사용합니다...
-
현역이고 이번에 수능 언매미적생지로 2(89) 1(97) 3 3(81) 4(75)...
-
2030년?
-
치대 선배님 공보의 근무하는데 가본 적 있는데 진짜 인생이 그렇게 편해보일 수가 없었음
-
군의도 웃긴게 4
성적 최우수자만 선별해서 위탁교육시키고 전문의 보드 따게하는거 현실은 의무복무 후 개원 오^^
-
학부가 중요한가요 로스쿨이 중요한가요??
-
둘중 ㅇㄷ감? 0
ㅈㄱㄴ + A는 SKY, B는 중경외시
-
본과때 서울라이프 가능한건가요??
-
쩝,,
-
의대 증원에따른 0
향후 의대의 입지나 위치가 궁금하네요. 어떻게 될까. 대입 입결을 보면 주식시장과...
-
김승리 유대종 2
비문학은 김승리 문학은 유대종이라 해서 유대종 문학듣고 김승리 비문학 이렇게...
-
청소년상담지도자격증, 복지사자격증 외 인터넷 관련 접속 시 나옴. 특히 사회복지사...
-
고려대학교 한국사학과에서 25학번 아기 호랑이를 찾습니다! 1
민족고대❗️녹두문대❗️역사의 주인 한국사대동반❗️ 안녕하세요, 한국사학과 25학번...
-
신기신기
-
난이도 해커스 토익 자유게시판 보니까 불토라는 말도 있던데 처음 치는 거라 잘...
-
자신의 생각을 조리있게 얘기하는 연습은 어떻게 해야할까요 2
항상 이게 부족하다고 느꼈어요 면접같은거 볼때도 그렇고 문제라고 느껴져서
-
수시 따윈 거들떠보지도 않는다!
-
https://youtube.com/shorts/_ChJo8nAffQ?si=RPAky...
-
2026 수특 독서 '지각에 대한 김창협의 주장' 심화 분석 6
수특 쭉 분석하다가 이건 조금 더 깊게 들어가볼만한 주제라고 생각해서...
-
내일 빌보드에 내이름 있었으면.... 근데 없을 가능성이 큼
-
맞팔하실분 11
-
무등비랑 삼도극이랑 같이 없어졌다고 하는 사람 있길래 물어봅니다.
-
국어 가르치는 과외 강사인데 가끔 보면 22비문학 어캐 풀어야 하나요? 24문학처럼...
-
내신경쟁 또 얼마나 치열할까엉엉나우러못흐겠어안할래 하 아니야... 고딩따리 300명...
-
위의 제목은 한 마디로 학점 만점 기준을 따진 거고 사립대, 국립대 중 일부는...
-
계획은 지켜야지..
-
오목 둘 사람 0
심심해
-
학비가 아예 안 든다고 어머니가 그러시는데 이건 뭔 소린가요? 그냥 아예 등록금...
-
얼버기 5
-
https://m.fmkorea.com/?mid=best&document_srl=79...
-
의대증원 효과 확실하네요
-
만약 헬스터디만 아니었으면 진작에 잘랐을거임
-
햅삐햅삐햅삐 0
해피해피해피
-
집 보내줘 4
-
후기가 거의 읍네
-
힘들었지만 원서 써놓은 거 생각을 안해도 되는 한달이라 결과까지 오르비지박령 안한...
-
이거 125만원 살만한건가요? 사면 호구인가요?
-
진짜 8시간 됐어
-
명절싫다 13
시발
-
투표좀 부탁 ㅈㅂ
-
ㅈㄱㄴ
-
뭐지 싶다
-
네무이 0
아 입수 보행 하고 싶다 D-498
-
노래기록 ㅇㅈ 6
파업파오 파오파오파업파업파업 예예
캬
다른 곳에서 올려주셨던 9번짜리 문제중에 수학2 문제만 모으신건가요?
다는 아니고 좀 풀만한 문제들을 모았습니다!
근데 설맞이 N제 문제 제작한 분이신가요..??
저랑 설맞이랑은 전혀 관련 없습니다ㄷㄷ
표지 디자인에 설맞이 적혀있어서 물어봣어요
2468문제인줄 ㄷㄷ
1357님?
요거 답지는 없나요??11번 답이 안 나오는데 아무나 풀어주실 수 있나요..?
지나가다 답글 남겨요! f(x)와 tf(t) 간 교점의 개수가 t가 0과 3일 때 불연속이라고 하였으니
tf(t)라는 곱함수에 대해 살펴보아야 하는데 t는 0보다 작을 때, 0보다 클 때는 양수이니 t값을 이용하여 불연속점을 특정할 수 있는데, t가 0일 때 불연속이 되기 위해서는 x축 위에서 중근을 가져야 해요!(t(t)가 0이라 그렇습니다
f(x)가 중근을 가진다는 것을 알았으니 이를 이용하여 불연속점을 하나 더 구하자면 f(x)의 함숫값이 0보다 크거가 같다는 것을 이용하여 3에서 불연속이라는 뜻은 x가 3에서 중근을 가진다는 것을 알 수 있어요!(불연속이 되기 위해서 tf(t)의 값이 0을 찍는 지점이 있어야 하는데 f(x)는 중근을 가지므로 불연속지점인 x=3이 f(x)의 중근이 됩니다)
a(x-3)^2에다가 함숫값 조건 대입하여 구하고자 하는 것 풀어내면 답은 16으로 나옵니다!
엇 이제 봤네요 감사합니다!!