칼럼16) 요청하신 무등비 좌표화 칼럼
요청해주신 무등비 좌표화 칼럼입니다.
앞으로도 주제 추천은 언제든지 환영입니다! 보고 싶은 주제가 있다면 댓글에 적어주세요
prologue
[좌표화를 대하는 태도]
2가지가 있습니다.
1. 최후의 수단으로 사용할 것!
처음부터 좌표화만 생각하면 더 편한 다른 길이 안 보일 수 있습니다. 다른 걸 시도해보다가 정 안 될 때 마지막에 쓰는 수단이라고 생각하세요.
또, 좌표화로 풀었다면 꼭 답지 보고 정석 풀이도 확인하시는 걸 추천드려요. 괜찮은 아이디어를 배울수도 있고, 이렇게 하는구나 하면서 경험을 쌓을수도 있습니다.
2. 계산에 대한 각오를 할 것!
좌표화는 출제자가 의도한 풀이가 아닐 겁니다. 우린 그걸 '억지로' 좌표화해서 답을 내는거기 때문에 계산이 더러울 수 있습니다. 이때 당황하지 않고, '더럽지만 이 식 풀기만 하면 무조건 답 나온다' 생각하며 덤벼들어야 합니다.
이제 본론으로 가겠습니다.
main subject
[좌표화의 아이디어]
지난번에 이런 댓글이 달렸어요. (전 글 확인하고 오실 필요 없습니다. 여기에 전글 내용까지 포함해서 썼어요)
아니요! 원이 없는 경우에도 가능합니다.
좌표화 풀이는 원이 있냐 없냐에 따라 방향성이 달라지는데요,
원이 없는 경우부터 알아볼게요.
(문제는 기출 중에서 쌩으로 풀기에 좀 까다로운 문항들로 준비했습니다.)
Q1.
2022년 9월 27번입니다. 가독성을 위해 이렇게 그림만 잘라서 가져오고, 문제 정보는 직접 알려드릴게요.
<문제정보>
AB는 1, AD는 2, 그리고 저기 보이는 직각이등변삼각형처럼 생긴 거 직각 이등변 맞습니다. (EFG)
<좌표화 풀이>
A, 그리고 점 C들은 전부 하나의 직선 위에 있습니다. 한번 이어볼게요.
이 선을 따라가면서 닮음인 도형이 계속 생성되는... 그런 느낌입니다. 마치 닮은 꼴 생성의 기준선 역할을 하는거죠. 앞으로 이런 선을 기준선이라 부르겠습니다.
기준선을 찾을 수 있는 무등비 문항은 정말 많습니다. 조금 있다가 많이 보여드리도록 하고, 일단 이 문제를 풀어볼게요.
제일 먼저 할 일은 구해야 하는 부분을 인식하는 겁니다.
그 뒤에 할 일은 어떤 정보를 통해 a를 구할 것인지 입니다. 여기서 제 눈에 들어온 건
기준선과 어떤 선의 교점이 C2다입니다.
강조해둔 이유는, 많은 경우에 직선 좌표화 풀이가 이 구조로 진행되기 때문입니다. 좌표화는 대개 어떤 두 도형의 교점을 구하는 쪽으로 풀이를 전개해가야 해요. 그 도형은 원일수도 있고 직선일수도 있죠.
이제 할 일은 원점 잡기입니다.
직선만으로 이루어진 경우에는 직선 식을 다 세울 수 있기만 하면 원점을 어디로 잡든 별 차이 없습니다.
원점을 A로 잡아도 되고, C1으로 잡아도 됩니다. 원점을 A로 잡았을 때 직선 EG의 식이 보이시나요?
흠.
보이는 분도 있겠지만 좀 고민하고 계신 분도 있을겁니다. 그럼 그냥 C로 원점 잡읍시다. C로 잡으면 두 직선 모두 식이 안 보일리가 없습니다.
둘을 연립하면 C2의 x좌표가 나오겠죠. 즉,
이 길이를 구한 셈이 돼서 아까 궁금했던 a도 구할 수 있습니다.
다음 문제로 넘어가볼게요.
2021학년도 수능 문제입니다.
Q2.
<문제정보>
EFC는 직각 이등변 삼각형
<좌표화 풀이>
일단 기준선이 확 눈에 들어오네요. 그어볼게요.
빨간색 기준선과, 초록색 직선의 교점이 C2입니다.
아까 문제랑 구조가 완전이 같아요!
다만 초록 직선식을 어떻게 세울지 고민을 좀 해야겠습니다. 기울기를 알아내야 하는데... 방법이 보이시나요?
tan세타=2인 세타와 45도를 가지고 덧셈정리를 써서 EF 기울기를 구할 수 있습니다.
EF의 기울기는 3입니다.
이번엔 원점을 점 A로 잡아볼게요. 그럼 EF의 식은 y=3(x-3)이 될겁니다. 기준선은 y=-1/2 x이므로 두 직선을 연립해도 좋지만, 다른 접근도 가능해요.
C2의 좌표를 (2a,-a)라고 바로 잡은 뒤에, EF식인 y=3(x-3)에 대입하면 a값이 나오겠죠. 원점을 잘 설정하면 간결하게 끝낼 수 있습니다.
이 문제를 가져온 이유는 덧셈정리 때문이에요. 좌표화 풀이 시에 덧셈정리 쓰는걸 꺼리지 마세요.
'답을 낼 수만 있다면 일단 내고 본다' 라는 좌표화 컨셉에 맞게 어떤 도구든 사용할 수 있어야 합니다.
다음 문제로 넘어가볼게요. 2020년 4월에 출제된 꽤 어려운 문항입니다.
4월에 어려운 도형 문제가 많이 나오는 걸로 봐서 아무래도 경기도 교육청에 도형 고인물이 한 분 계시는 것 같습니다
Q3.
<문제정보>
그림에 표시된 길이를 가진 사다리꼴입니다.
<좌표화 풀이>
이건 어떻게 가도 막 쉽진 않을거에요. 저도 이 문제 처음 풀 때 안 보여서 좌표화로 해결했습니다.
맨 처음 한 것은 역시나 기준선 찾기 입니다.
F에서 선분 AB에 내린 수선의 발을 점 O라고 합시다. 점 D들을 쭉 이은게 점 O를 딱 지나기 때문에, 저 빨간선이 기준선이 됩니다.
기준선과 GF의 교점이 D2라고 하면 원하는걸 딱 얻을 수 있겠네요. D2C2길이를 알아야 하니까요.
이제 식을 세워야겠죠. 처음 그림으로 돌아가서 정보를 더 뽑아봅시다.
등변사다리꼴의 높이가 4루트2입니다. 그럼 기준선 식을 세울 수 있어요. 원점은 O라고 합시다.
이제 GF 식을 세워야 해요.
등변사다리꼴을 관찰하다보면 다음 정보 역시 알 수 있겠죠. GF의 y절편은 4루트2고, 기울기는 루트2 /2네요.
이게 GF 식입니다. 둘이 연립하면 D2의 x좌표가 나오고, 그럼 D2C2 길이를 구할 수 있어요. 공비가 나왔네요.
좌표화 풀이의 장점을 확실하게 보여준 문제라 생각합니다. 해야할 일이 비교적 명료하기 때문에, 그대로 하기만 하면 돼요. 신경 쓸 점이 있다면
1. 어떻게 식을 완성할 것인가. 기울기 정보와 지나는 점 찾기!
2. 원점은 어디로 잡을 것인가
...정도겠네요.
원 없는 무등비 좌표화는 이 정도면 충분한 거 같습니다.
늘 기준선이 있거나, 기준선이 꼭 유용한 건 아니에요. 도형에 그려진 것들만 가지고 식세우면 답 나오는 것들도 있습니다. 그런건 따로 설명할 정도로 좌표화 풀이가 어렵지 않습니다.
도형 문제가 어려운 게 보조선 때문이라고들 하잖아요? 여기서 기준선이 마치 보조선 느낌이기 때문에 일부러 여러 번 보여드렸습니다.
p.s. 작수 기준선
작년 수능 무등비 문제에서도 기준선을 찾을 수 있어요.
혹은 OP를 쭉 이은 것도 기준선이라 할 수 있겠죠.
물론 꼭 기준선이 아니라도, 원과 선분 나오면 당연히 고려해봐야 할 '수선 내리기'로 인식해도 되긴 합니다.
어쨌든 요점은, 좌표화를 안 하더라도 기준선은 종종 도움이 된다는 겁니다. 보인다면 한 번쯤 그어보는 것도 나쁘지 않아요.
아무튼 원으로 넘어가볼게요.
원이 포함된 경우에 좌표화를 한다면, 원의 방정식을 써먹어야 합니다.
한편, 원과 직선을 연립하는 건 쉽지 않습니다. 계산량이 너무 많아져서 실수하기 십상이에요. 그럼 원의 경우에는 어떻게 처리해야 하느냐...
다음 예시를 통해 알아보겠습니다. 2023 4월 28번입니다.
Q4.
<문제정보>
위 도형에서 AB, BC 길이 2:뤁3을 유지하면서 계속 도형을 그려갑니다.
<좌표화 풀이>
원도 아까와 마찬가지입니다. 기준선을 찾아볼게요.
A를 원점으로 잡고, "큰 원과 AC가 만나는 점이 C2다"라는 계산을 해주면 되겠죠.
하지만 앞서 말했듯이, 원과 직선을 연립하는 건 매우 힘듭니다. 그래서 직선을 연립하는 대신 점을 대입하는 방향으로 가야 합니다.
C2 좌표가 다음과 같이 잡히네요.
이제 원의 방정식을 구해야겠죠.
원은 중심이 (1, 1/뤁3)이고 반지름이 2/뤁3 입니다.
공비가 6/7로 깔끔하게 계산되네요.
이처럼 원이 나온 경우에는 점을 원방에 대입하는 방향으로 풀이를 전개해가면 됩니다.
네 개의 까다로웠던 기출문항을 통해 좌표화 풀이에 대해 알아봤습니다.
좌표화 하면 무조건 풀리냐? 묻는다면...
꼭 그렇진 않습니다. 지난 번 글에 2021년 4월 좌표화 가능한지 묻는 댓글이 있었어요.
이게 2021 4월문항인데
흠...
저도 좌표화 길이 안 보입니다 ㅋㅋㅋㅋ
이처럼 좌표화가 어려운 문항도 있습니다. 좌표화가 만능은 아니란거죠. 그렇지만 많은 경우에 도움이 될 수 있는 아주 유용한 도구임은 확실합니다.
책참님이 남겨주신 댓글처럼 말이죠!
준비한 내용은 여기까지입니다. 열심히 썼는데 도움이 되었으면 좋겠네요 ㅎㅎ
전 다음에 더더 좋은 글로 찾아뵙겠습니다.
좋아요와 팔로우 부탁드려요 !
#무민
0 XDK (+1,000)
-
1,000
-
여르비분들 질문 11
선물로 보내주려고 고른건데 디자인 어떤가여?
-
ㄹㅇ 재능충인가 1
맵만 외우면 ㄹㅇ 괜찮을지도
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
어쩌자는거야
-
그래프풀이로는gx가연속이라는걸보장할수없습니다즉식풀이를하여야하는데이때근의송식을사용합니다...
-
현역이고 이번에 수능 언매미적생지로 2(89) 1(97) 3 3(81) 4(75)...
-
2030년?
-
치대 선배님 공보의 근무하는데 가본 적 있는데 진짜 인생이 그렇게 편해보일 수가 없었음
-
군의도 웃긴게 4
성적 최우수자만 선별해서 위탁교육시키고 전문의 보드 따게하는거 현실은 의무복무 후 개원 오^^
-
학부가 중요한가요 로스쿨이 중요한가요??
-
둘중 ㅇㄷ감? 0
ㅈㄱㄴ + A는 SKY, B는 중경외시
-
본과때 서울라이프 가능한건가요??
-
쩝,,
-
의대 증원에따른 0
향후 의대의 입지나 위치가 궁금하네요. 어떻게 될까. 대입 입결을 보면 주식시장과...
-
김승리 유대종 2
비문학은 김승리 문학은 유대종이라 해서 유대종 문학듣고 김승리 비문학 이렇게...
-
청소년상담지도자격증, 복지사자격증 외 인터넷 관련 접속 시 나옴. 특히 사회복지사...
-
고려대학교 한국사학과에서 25학번 아기 호랑이를 찾습니다! 1
민족고대❗️녹두문대❗️역사의 주인 한국사대동반❗️ 안녕하세요, 한국사학과 25학번...
-
신기신기
-
난이도 해커스 토익 자유게시판 보니까 불토라는 말도 있던데 처음 치는 거라 잘...
-
자신의 생각을 조리있게 얘기하는 연습은 어떻게 해야할까요 2
항상 이게 부족하다고 느꼈어요 면접같은거 볼때도 그렇고 문제라고 느껴져서
-
수시 따윈 거들떠보지도 않는다!
-
https://youtube.com/shorts/_ChJo8nAffQ?si=RPAky...
-
2026 수특 독서 '지각에 대한 김창협의 주장' 심화 분석 6
수특 쭉 분석하다가 이건 조금 더 깊게 들어가볼만한 주제라고 생각해서...
-
내일 빌보드에 내이름 있었으면.... 근데 없을 가능성이 큼
-
맞팔하실분 11
-
무등비랑 삼도극이랑 같이 없어졌다고 하는 사람 있길래 물어봅니다.
-
국어 가르치는 과외 강사인데 가끔 보면 22비문학 어캐 풀어야 하나요? 24문학처럼...
-
내신경쟁 또 얼마나 치열할까엉엉나우러못흐겠어안할래 하 아니야... 고딩따리 300명...
-
위의 제목은 한 마디로 학점 만점 기준을 따진 거고 사립대, 국립대 중 일부는...
-
계획은 지켜야지..
-
오목 둘 사람 0
심심해
-
학비가 아예 안 든다고 어머니가 그러시는데 이건 뭔 소린가요? 그냥 아예 등록금...
-
얼버기 5
-
https://m.fmkorea.com/?mid=best&document_srl=79...
-
의대증원 효과 확실하네요
-
만약 헬스터디만 아니었으면 진작에 잘랐을거임
-
햅삐햅삐햅삐 0
해피해피해피
-
집 보내줘 4
-
후기가 거의 읍네
-
힘들었지만 원서 써놓은 거 생각을 안해도 되는 한달이라 결과까지 오르비지박령 안한...
-
이거 125만원 살만한건가요? 사면 호구인가요?
-
진짜 8시간 됐어
-
명절싫다 13
시발
-
투표좀 부탁 ㅈㅂ
-
ㅈㄱㄴ
-
뭐지 싶다
-
네무이 0
아 입수 보행 하고 싶다 D-498
-
노래기록 ㅇㅈ 6
파업파오 파오파오파업파업파업 예예
-
시나모롤 1
기엽다
좌표는게추
좌표계는 킹정이지
형님 개추 5개 눌럽읍니다 울부짖으면서..
무등비에서 사인 코사인 법칙 써야하는 상황 마주할 수 있는데
보통은 평가원에선 잘 안냈던걸로 기억함
이때 좌표화해서 직선교점 찾고 계산때려서 찾아버리는 방법도 있는데
문제는 도형이 직사각형, 삼각형처럼 모양이 예쁘면 그나마 할만하고
도형에 원 위의 점, 잘려나간 원 이딴거 들어오면 계산량 ㅎㄷㄷ.......
위에 쓰인대로 앵간하면 정석대로 풀고
도저히 못 풀 겠다 싶을 때
이게 진짜 좌표화해서 구현할 수 있을만한 상태인지 판단해볼 필요가 있음
직각이나 직선 형태로 구현하기 너무 예쁘다! 라고하면 좌표 트라이 하고
직각도 ㅈㄴ 안보이고, 직선으로 구현하자니 직선의 기울기에 대한 정보가 없다거나
이러면 좌표화 해도 ㅈ빠지게 힘들이고 못 풀 수도...
우와 이번 4월 학평 28번이 공비 구하기 아주 어려웠는데 좌표화를 하면 저렇게 쉽게 구할 수 있었군요
기하에서 벡터좌표 잡고 푸는 거랑 비슷한 느낌 맞나요?
벡터좌표보다는 거부감이 더 있고, 수1 도형 문제를 좌표화 해서 푸는 것보단 거부감이 덜한 느낌!
님 ㄹㅇ 정병훈인가
수1공통도 좌표화풀이가 가능한가요?
맨 막지막은
C1A를 x축으로 잡고
C1A랑 C1B가 이루는 각을 미지수로 잡은채
좌표화하면 될 듯
감사합니당
팁 ㄱㅅ