[이동훈t] 부분에서 전체 보기 (+231128미적분) 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 수능에서
반복되는 테마인
부분에서 전체 보기
에 대해서 알아보겠습니다.
작년 수능 미적분 28번
한번 보실까요 ?
(이후의 글은
아래 문제에 대한
풀이의 일부를
포함하고 있으므로
문제를 풀고 나서
계속 읽기를 바랍니다.)
이 문제를 읽고 나서
바로 들어야 하는 생각은
다음과 같습니다.
(f는 쉽고)
g를
직사각형+삼각형으로 구할 것인가. (A)
아니면
큰 직각삼각형에서 작은 직각삼각형을 빼서 구할 것인가. (B)
어느 쪽이 더 쉬울 지를 결정해야 한다.
A의 풀이를
아마도 많은 분들이
선택하였을 것이고,
좀 더 와일드 한 성향의 분들은
B의 풀이를
선택하셨을 것입니다.
왜냐하면 딱 보기에도
S1+S2 가 아니라
S-S3 의 느낌이 드니까요.
A 의 풀이를 따르면
아래와 같이
보조선을 긋고,
직사각형과 직각삼각형의 넓이의 합을
구하면 됩니다.
이 풀이는 각과 길이를 결정하는 것,
극한 계산을 하는 것이
어렵지 않으므로
자세한 건 넘어가고요.
B 의 풀이를 적용하기 위해서는
아래와 같이 큰 그림을
볼 수 있어야 합니다.
위의 그림에서
두 직각삼각형
CQD, SRD 의 닮음비는
2 : 1+theta
이므로
문제에서 주어진 극한 계산은
다음과 같습니다.
(theta -> 0+ 일 때,
sintheta를 theta로 근사한 것입니다.)
B 의 풀이에서 보면 ...
직각삼각형에서의 닮음비가
출제 의도로 보입니다.
요컨대
이 문제에서도 반복된 테마인
" 도형의 넓이를 구할 때,
S1+S2 (부분+부분) 또는 S-S3 (전체-부분)
중에서 어떤 쪽을 택할 것인가 ? "
는 올해 수능에서도
100 % 출제될 것이므로
기출 문제를 가지고
충분히 연습해야 할 것입니다.
일요일 저녁에도
열공하는 당신이야 말로.
최후에 웃으리 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생윤 40 1컷 0
가능성 없을까요? 진짜 너무 간절한데
-
학교 레벨은 취향차이인 것 같고
-
우웅
-
챕터는 왜 나누는 것이며 스토리를 왜 쓸데없이 질질 끌어 뮤지컬 영화래서 기대했는데 기대 이하
-
사문한지가꿀임뇨 1
올해까진확실함뇨
-
는 사진이 없어서 닮은꼴로 대체 좀 비슷한거 같기도,??
-
사문 고이면 5
곱하기 빼기 나누기 입갤 점수는 4점인데 틀리면 -1점 1개 맞으면 더하고 2개...
-
슈냥님 제외 내가 제일 나이 많으려냐
-
닥터페퍼도 좋아해요
-
탐구를공통선택체제로만들어서보정해야하지않앗을까
-
기계가 있으면좋겠다
-
탐구 선택에 따라서 유불리가 너무 심한듯
-
그로부터 우리 와노쿠니 어쩌구
-
독서 문학 둘다 정석민 쌤 탔었는데 독서는 체화 시켰는데 문학은 체화가 덜된것같아요...
-
현우진 2025 뉴런강의 11월 30일 지나면 없어지나요? 0
안 없어지나요?
-
힘쎄다
-
화학을 잘한다 -> 사문생윤을 한다 물리를 잘한다 -> 사문생윤을 한다 생명을...
-
닝겐은 코와이라는거임뇨
-
공익to 5
왜케 적지 증원좀 해주세요...이젠가고싶다
-
어우 역겨워 지금도 충분히 역겨운데
-
꿈에서도 허둥지둥대는 거 보니까 진짜 내 성격 자체가 좀 그런 거 같은데 겁...
-
곧 지울 글입니다..! 지금 21살이고 폰은 아이폰12시리즈 중 하나 씁니다. 3년...
-
운전면허 따세여 2
나이 30에 연차내면서 면허 따기 싫으면
-
호훈 수강생분들 1
문제 푼 뒤 논리를 요약하는 행동을 구체적으로 어떻게 해야하는지 설명 부탁드립니다....
-
24수능 끝나고는 분명히 그냥 점수 맞춰서 다닐 생각이었단 말이지
-
점심 ㅁㅌㅊ 11
사용한 비용: 약 1300~1400원 가성비 ㅇㅈ??
-
탐구 선택 고민일 때 보면 좋은 글, 올해 수능 총평 및 복기 0
여기에 쓰려고 했는데, 글이 길어서 블로그 글 올립니다....
-
국어만 높고 나머진 거의 망이라 잘 모르겠어요 대충이라도 알려주시면 감사하겠습니당…ㅠㅠ
-
배탈남 6
졸라아프네
-
영어때문에.. 약대 아무대나 가능한곳 있을까요?
-
점메추 0
카레 구독자여러분들덕에 또 맛있게 덕코로 사먹었어요!!!
-
게으르고멍총하기까지함뇨 인생어뜨캄뇨
-
근데 삼수한다고 의대가 보장되는게 아니잖아요...
-
수시 면접 0
수시 면접 확인서 면접 전에 미리 뽑아도 되나요?
-
진짜달에만원내줄수있어
-
다들 점심 드세요 21
맛점~
-
미적분 선택이 수2의 미적분 문제 푸는데도 도움이 될까요? 2
말 그대로입니다. 미적분 선택이 수2의 미적분 문제 푸는데도 도움이 될까요? 수능...
-
과탐에서 3,4등급이던 사람들이랑 2등급인 사람들이 1등급 안나와서 사탐런을...
-
사실 모르겠고 낮잠 ㅈㄴ 자고싶음
-
곧 12월인데 날씨가 이게 맞음..? 봄인데 그냥?
-
이세계에서는 덕코로 맛난거 많이 사먹음요
-
솔직히 물1,화1 선택자는 가산점을 더 주는 게 맞다고 봅니다. 7
자연계나 공대 가선점이 지금도 대개 있긴 하지만, 이것도 너무 부족합니다. 특히...
-
오묘한맛 9
와루쿠나이
-
심각하게 ㅆ창남? ㅅㅂ 올해 갔어야 됐네…
-
난~ 9
겁쟁이 랍니다아~
-
물리 강사한테 문제 들고갔더니 자꾸만 내 허벅지를 쓰다듬는거임뇨 자꾸 야추에...
-
수리 다 푸셨나요? 올해 좀 쉬웠던거 깉은데
-
내년 사문은 n제랑 실모 시장 엄청 확대될 거 같다 올해는 찐하위권 과탐러들이 주로...
-
내 방 벽지 5
아직 뽀로로임
-
ㅆㅂ 25
저도 작년에 9모 13번 근사로 풀어서 맞췄던게 생각나네요
저도 수1도형 풀때 근사쓸때가 있네용
나중에 칼럼 써보고 싶은데..ㅋㅋ 9모 13번은 진짜 참신하게 풀어서 그럴 실력이 안되네요 확통 기출은 시작도 안해서 힝
저도 작년 9모 13번은 근사적으로 한 번 도전해 보겠습니다. :)