[이동훈t] 3월 수학 문항 분석
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 학평
수학 문제
분석을 해보겠습니다.
전체적으로 깔끔하게
잘 만들어진 시험지입니다.
한 가지 아쉬운 점이라면 ...
계산 분량을 좀 줄였으면 ...
더 좋았을 것 같다는 생각이 들었습니다.
물론 수능에서 등장하는
실전 개념을
적절히 활용하면
계산 과정을 줄일 수 있겠지만 ...
그럼에도 불구하고
계산 분량이 좀 많다는 인상을
지울 수 없었습니다.
그리고 이론적으로
새로운 문항은 전혀 없었습니다.
새로운 상황을
제시한 문항도 없었습니다.
개인적으로는 11번이
평면도형이 약한 분들에게는
좀 어렵지 않았나 싶은데요.
이 역시 주어진 조건을 모두 활용해야 한다.
라는 원칙을 지키면
시행착오가 거의 없이
풀리긴 합니다.
자. 이제 시작합니다.
(그림판으로 그린 그림들이라 ...
그림 상태는 양해부탁드립니다.)
아... 그리고 주말에는
3월 학평 전 문항에 대해서
(1) 평가원, 교사경 기출 연관성
(2) 2024 이동훈 기출 수능 실전 개념과 연관성
을 다룬 글을 올려드릴 예정입니다.
요게 또 ...
공부하는데 도움 됩니다.
< 공통 >
1 ~ 6. 교과서 예제, 유제, 연습문제 수준
7. 이차함수의 정적분 공식
S=|a|/6 * (beta-alpha)^3
을 쓰면 빠른 계산이 가능합니다.
8. 교과서 연습문제 수준
인수정리로 빠르게 삼차함수의 그래프를 그리고
변곡점의 성질(점대칭)과
삼차함수의 비율관계를 적용하면
계산이 거의 없이 깔끔하게 풀립니다.
절댓값을 벗기기 위해서
a4, a6이 모두 양수
a4은 음수, a6은 양수
a4, a6이 음수
의 세 경우로 구분합니다.
조건 (나)에서
a4은 음수, a6은 양수
인 경우만이 성립함을 알 수 있습니다.
나머지는 전형적인 풀이를 따르면 됩니다.
평면도형이 약한 분들에게는 꽤 어려운 문제일 수 있는데요.
각을 모두 쓰고, 길이를 모두 구한다.
라는 원칙을 따르면 위의 그림처럼 빨간 색의
선분의 길이와 각의 크기를 구하게 됩니다.
AC : 코사인법칙
PC : 사인법칙
각C : 사인법칙
이런 순서로 구하게 되는데요.
각C 를 구해야 하는 이유는 끼인각을 알아야
삼각형의 넓이를 구할 수 있기 때문입니다.
그런데 이게 좀 어려울 수 있다는 생각이 듭니다.
최근 몇 년 간 직선의 기울기로
직각삼각형의 세 변의 길이의 비율을
유도하는 문제들은 많았습니다.
또한 위의 그림처럼 곡선과 직선이 만나는
교점의 x 좌표를 각각 alpha, beta로 두고
이차방정식의 근과 계수의 관계를
활용하는 문제도 많았지요.
이런 관점에서
매우 전형적인 문제라고 볼 수 있습니다.
(가)에서 a의 값이 2 가지가 나오고.
각 경우에 대하여
이차함수의 대칭성(대칭축)의 관점에서
위와 같이 굵은 두 직선(빨간색)을
찾으면 됩니다.
x=k에서 연속일 조건, 미분가능할 조건만 생각하면
그냥 계산 파티하는 문제입니다.
계산량 좀 줄여주질 그랬어요.
작년 수능 수열 문제 비슷한데요.
a2가 짝수인 경우, 홀수인 경우
이 둘로 구분하고
각각의 경우에 대하여
다시 a3이 짝수인지, 홀수인지를
구분하면 어렵지 않게 풀립니다.
수형도 또는 표 그려서
판단 계속 하라는 문제이고
이론적으로 새로운 점은 없습니다.
16 ~ 19: 교과서 예제, 유제, 연습문제
평행이동 해도 변하지 않는 성질에 대한 문제입니다.
f ' (-p) = f ' (p) = 0
위의 등식은 미분계수의 정의보다는
평행이동의 관점에서 바로 이끌어 내는것이
현실적일 것입니다.
이 다음은 정적분 + 평행이동의 관점에서
풀이하면 됩니다.
2024 이동훈 기출에서는
수학2에서 평행이동해도 변하지 않는 성질을
별도의 주제로 다루고 있습니다.
네 점 A, B, C, D의 좌표를 구하는 것은 기계적으로 하면 되고
선분의 길이와 삼각형의 넓이를 구하고 나면
같은 식이 반복되는 것을 알 수 있습니다.
같은 식이 반복되면 ? 당연히 치환하면 됩니다.
이것도 2024 이동훈 기출 수학1 지수로그에서
다루고 있습니다.
함수 h(t)에서 주어진 극한식에서
위의 그림처럼 꺽이는 점과 접선의 기울기가 0인 점만이
가능함을 알 수 있습니다.
(이건 평가원 기출에 있죠.)
사차함수의 그래프 개형 4가지에서
3가지는 탈락함을 알았다면
나머지 한 경우를 다시 두 경우로 구별하여
위와 같이 선대칭인 경우만이 가능함을
알게 됩니다.
사차함수의 방정식을 세울 때,
비율관계를 이용하면 좀 더 빠를 것이고요.
이 문제 역시 앞선 3차 함수 문제와 같이
평행이동의 관점이 녹아 있습니다.
< 확률과 통계 >
23 ~ 27 : 교과서 예제, 유제, 연습문제
비둘기 집의 원리는 자주 출제되니
반드시 알아야 겠구요.
(상식적인 것이긴 합니다만.)
1+1+1+2
각각에 대하여 사탕의 개수를
정해주고, 원순열의 수를 구하면 됩니다.
차근차근 풀면 어려울게 없습니다.
그냥 ... 풀면 되는 문제. 심심.
이런 문제는 어떤 이론적인 것으로 푸는 게 아니라
문제에서 주어진 조건을 만족시키도록
숫자를 정하면 됩니다.
하나 하나 케이스 구분을 하는
연습을 충분히 하였는가를
평가하고 있습니다.
지금까지 여사건이 나오지 않았으므로 ...
(나)는 딱 봐도 여사건 입니다.
(나)의 부정을 쓰고 나면
n(AUB)=n(A)+n(B)-n(A교집합B)
에 대한 문제임을 알 수 있습니다.
그 이후는 전형적인 풀이를 적용하면 됩니다.
< 미적분 >
23~25: 교과서 예제, 유제, 연습문제
이런 문제는 치환하는게 좋고요.
다만 위와 같이 1은 의미가 없으니,
싹 지워놓고 풀면 빠르게 풀리긴 합니다.
근사 계산에 능숙한 분들은
이렇게 풀면 되겠고요.
맨 처음 주어진 a1, a2의 값이
등차수열 {bn}의 첫째항과 공차를 구하기 위한 것임을
알아야 하고요.
이 문제는 수열의 합에서 일반항을 유도하는 문제와
극한값을 구하는 문제를 물리적으로 결합하였을뿐.
그 이상은 아닙니다.
0<a<1, a>1
이렇게 두 경우로 구분하지 않았다면
수능에서 당황스러울 수 있겠지요.
별것 없으면서 ...
꽤 잘 출제한 문제라고 생각합니다.
그래도 좀 계산분량은 줄여주지...
무리식이 포함된 부등식에서
정수의 개수를 구하는 것은
최근에는 잘 안나온다는 느낌인데요.
완전제곱식의 관점에서
한 번 쯤은 ...
생각해볼 필요는 있습니다.
극한 계산은 빠른 계산법을 이용해야 하겠고요.
아 ... 이런 문제는 그냥 아무것도 아닌데요.
함수의 확대, 축소에 대한 연습이
부족한 분들에게는 좀 어려울 수 있겠다는
생각이 듭니다.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
< 기하 >
23 ~ 26: 교과서 예제, 유제, 연습문제
(26번이 좀 껄끄러울 수 있는데.
사실 수능에서 많이 다룬 상황을
평행이동하였을 뿐입니다.)
그냥 수능 문제 살짝 변형이네요.
a, b, c, d 두고 식 세워서 풀면 됩니다.
이 문제도 평가원 기출 중에 있는데요.
숫자만 살짝 바꾼 느낌입니다.
삼각형 두 개가 붙어 있는데
코사인 값이라 ...
코사인 법칙 쓰라는 것이죠.
원과 접선의 위치 관계,
포물선의 정의
를 이용하면 위와 같이 보조선을 긋게 되고요.
직각삼각형(마름모)에서
각 선분의 길이를 쓰고
비례관계를 이용하면
어렵지 않게 풀립니다.
이 역시 평가원 기출에서
수 차례 다룬 상황입니다.
30번 답게...
그냥 주는 문제는 결코 아니구요.
타원의 정의,
쌍곡선의 정의에 따라서
보조선을 모두 긋고,
선분의 길이를 모두 쓰고 나면 ...
그런데 살짝 잘 안보이죠 ?
이 문제 역시 28번과 마찬가지로
한 각을 공유한 2개의 삼각형를
소재로 하고 있습니다.
이는 2024 이동훈 기출 수학1에서
자세하고 설명하고 있습니다.
(삼각함수에서...)
3월 학평 ...
모두 수고하셨습니다.
화이팅 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 화작 백분위 88 나왔습니다. (모의고사에서는 90 아래로 내려간적 없었음요)...
-
급식표 보려고 홈페이지 들어갔는데 정규반으로 되어있네 종합반으로 등록했고 시간표도...
-
서연고 써야할 애들이 계속 들어와서 알박기하는데 진짜 ㅈ같네요 ㅅㅂㅅㅂㅅㅂㅅㅂ
-
잘 가르치시나요? 좋은지도 궁금....
-
아몰라 붙여줘 0
자꾸 추합권에서 등수가 5등 정도 왔다리 갔다리 하는데 그냥 붙여줘 ㅅㅂ.......
-
성적 보고싶은데 못보네..
-
전문자격으로 보면 한국항공대 항공운항이 좋을듯하긴 한데...어디가 좋을까요?
-
진학사 표본분석 0
표본분석이 뭔말인지는 모르는데 그냥 저보다 앞에있는 사람 1 2 3지망 보고 빠질거...
-
영어 문법 진득하게 가르치는 강의가 있을까요? 볼륨이 너무 작은 것 말고 크게크게...
-
풀패키지밖에 못사나요?
-
노베 고3 국어 0
안녕하세요! 처음 글 써보는 뉴비입니다! -2025수능 기준 4등급 -국어 공부...
-
7.5kg빠짐
-
적어놓은 학과 말고 그 이외의 다른 학과 물어봐도 되나요?
-
연대 공대면 안주는거 맞죠?
-
방금 전화해서 내 좌석번호 물어봤는데;; 맞는건가?..
-
밑 대학에서도 차례대로 빠질려나?
-
등 머신 할때 이두 하고 가슴 머신할때 삼두 되니깐 팔 운동 안해도 되나욥??!!!!
-
정원이 12명인데 내 앞에 10명 싹다 물천 1지망이네 투 하나만 꼈어도 안정인데
-
보통 얼마나 돌려드리는 게 일반적임? 교수님한테 한 35정도 받은 것 같은데 오늘...
-
연습때 계속 100점 나왔었는데 t자주차에서 차선 이탈에 사이드브레이크 안잠그는거에...
-
머가 더 빡셈
-
뉴런 스블 병행 0
25뉴런 수1, 수2, 미적 다 듣고 진짜 실력 많이 늘었는데 김범준쌤 풀이가...
-
되나요?? 자동결제 해지를 안해서... 당연히 강의 시청은 안했습니다.
-
어차피 오늘 당장 고칠수도 없긴 한데 젓가락질 보고 천하의상놈이라고 생각하시면...
-
옯스타에만 ㅈㄴ게 올림뇨
-
웩슬러 검시 1
어떤 거 해야 함??
-
라인이 딱딱 나뉘어있어서 그래서 수시이월같은 변수가 아니면 윗라인 노려보기가 힘듦 ㅠㅠ 반박환영
-
먼저가줄게 친구들아
-
현재 수시가 하나 붙어서 재수가 아닌 반수를 해보려고 합니다. 이번 수능 백분위는...
-
합격자중에 설공이 대부분이란 말은 들었는데 걍 서울대 수준이 높아서 그런거임?아님...
-
글경 4
여기 없는 다른 컨설턴트하고도 얘기했는데 일단 658 미만 <- 가능성 X 로 잠정...
-
나름대로는 열심히 했을 순 있겠다만 영대보다 낮은데 .... 지거국은...
-
08년생 27입시 얘넨 억까 맞음
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
역사 = 천하제일 암기대회 라는 인식이 너무 강함 역사라는 건 반복되는데 실제로...
-
이 논리 평가좀여.. 21
∀x(Ex) : 모든것이 존재한다 부정형은 ∃x(¬Ex) : 존재하지 않는것이...
-
왜 진학 등수가 며칠째 그대로니
-
논술 논란 때문에 인원이 어쩌구 저쩌구 1년 10개월 전에 입학 인원 어쩌구 정해야...
-
학부대학 광역 0
405.2 뚫림?
-
오겜2볼까 4
흠
-
코뿔소가 달려들어서 죽었어
-
6칸인데 ;;
-
mbti 결과 ㅇㅈ 11
인티제... T랑 F 무엇 ㄷㄷ
-
미적만 들을거거든요 어렵다고들 하는데요 어떤가요???
-
수시로도 서울대 붙을 정도라는 말이 있던데 사실인가요?
-
강대 기숙에서 자기 아이패드로 인강 볼 수 있나요??
-
벌점 10점 받는 꿈 꿨음
-
수학 고2 9모로 백분 86 3등급인데 지금 일주일에 3번 2시간씩 수학학원 다니고...
-
정체성도 걍 한국인이고 외국에 그리 오래산것도 아닌데 지는 어차피 어지간하먼...
첫번째 댓글의 주인공이 되어보세요.