초등학생도 이해하는 필요조건, 충분조건
안녕하세요. 독해와 논리를 가르치는 이해황입니다.
아래 내용은 PSAT/LEET 베스트셀러 『논리개념 매뉴얼5.0』을 바탕으로 제작되었습니다.
초등학생도 이해할 수 있게 썼지만, 수능뿐만 아니라 PSAT/LEET 수험생도 도움이 될 만한 자료입니다. :)
--
I. 들어가기
초등학교 과학시간에 전기회로를 배우며 직렬연결, 병렬연결을 배웁니다. 이를 통해 논리적 사고의 핵심인 필요조건, 충분조건, 필요충분조건을 직관적으로 이해할 수 있습니다. 결론부터 말하자면, 필요조건은 직렬연결에, 충분조건은 병렬연결에, 필요충분조건은 단일연결에 대응됩니다.
이를 간결히 설명하기 위해,다음과 같이 표현법을 약속하겠습니다.
L : L에 불이 들어온다.
~L : L이 거짓이다. 즉, L에 불이 들어오지 않는다.
A : A함에 전지가 들어있다.
~A : A가 거짓이다. 즉, A함에 전지가 들어있지 않다.
II. 전기회로와 논리적 개념
1. 직렬연결
직렬연결 전기회로에서는 다음이 성립합니다.
~A이면 반드시 ~L이다.
논리학에서는 ~A이면 반드시 ~L일 때, A를 L이기 위한 필요조건이라고 합니다. 이를 일상어에서는 다음과 같이 표현합니다. (아래 표현들을 익혀두면, 글을 읽거나 쓸 때 요긴하게 활용할 수 있습니다.)
A는 L이기 위한 필요조건이다.
≡ ~A이면서 L인 경우는 없다/불가능하다.
≡ (오직) A이어야(만)/일 때만/인 경우에만/인 (전제/가정/조건) 하에서만 L이다/일 수 있다/가 보장된다.
≡ L이려면 A이어야(만) 한다.
≡ L이기 위해서/위하여 A이어야(만) 한다.
≡ A는 L이기 위해 필요하다/필요한 조건이다/필수적 조건이다.
≡ A이지 않으면/않는 한/않는 이상 L?일 수 없다.
≡ L은 A를 함축/전제한다.
≡ A는 L의 요건/전제조건/선결조건/요구조건/핵심조건이다.
≡ A가 성립되지 않으면 L일 수 없다/이 성립될 수 없다.
≡ A는 L이기 위해 필요하다/요구된다/없으면 안 된다/반드시 있어야 한다/필수적이다/필수불가결하다.
마찬가지로 ~B이면 ~L이다, ~C이면 ~L이다가 성립하므로, B는 L이기 위한 필요조건이다, C는 L이기 위한 필요조건이다도 성립합니다.
2. 병렬연결
병렬연결 전기회로에서는 다음이 성립합니다.
A이면 반드시 L이다.
논리학에서는 A이면 반드시 L일 때, A를 L이기 위한 충분조건이라고 합니다.
이를 일상어에서는 다음과 같이 표현하기도 합니다.
A는 L이기 위한 충분조건이다.
≡ A이면서 ~L인 경우는 없다/불가능하다.
≡ A이면/일 때/인 한/인 경우에/인 이상/하에서/이기만 하면/인 것만으로도 L이다.
≡ A가 성립하면/보장되면 L이 보장된다/성립한다.
≡ A라는 전제/가정/조건 하에서 L이다.
≡ L는 A의 논리적 귀결이다.
마찬가지로 B이면 L이다, C이면 L이다가 성립하므로, B는 L이기 위한 충분조건이다, C는 L이기 위한 충분조건이다도 성립합니다.
3. 단일연결
전구가 하나의 전지와 단일연결되는 가장 단순한 경우를 생각해봅시다. 이때는 다음이 성립합니다.
A이면 반드시 L이다.
~A이면 반드시 ~L이다.
따라서 여기서 A는 L이기 위한 필요조건이면서 동시에 충분조건입니다. 이때 철학자들은 간결히 A를 L이기 위한 필요충분조건이라고 합니다.
A가 L의 필요충분조건이라는 것을 영어로는 A if and only if(줄여서 iff) L이라고 표현합니다. 근데 한국어에는 iff에 딱 들어맞는 표현이 없어서, 다음과 같이 다소 어색하게 표현됩니다.
A일 때, 그리고 오직 그때만 L이다
≡ A일 때 L이다. 그리고 오직 A일 때만 L이다.
≡ A는 L이기 위한 충분조건이다. 그리고 A는 L의 필요조건이다.
≡ A는 L이기 위한 필요충분조건이다.
맥락에 따라 A는 L의 기준이다도 필요충분조건을 타내는 표현으로 볼 수 있습니다.
4. 직렬연결을 병렬로 연결
직렬연결을 병렬로 연결한 아래와 같은 전기회로도 상상해볼 수 있습니다.
이때 A는 L이기 위한 필요조건은 아닙니다. 아래처럼 ~A여도 L일 수 있으니까요.
또한 A는 L이기 위한 충분조건도 아닙니다. 아래처럼 A여도 ~L일 수 있으니까요.
하지만 필요조건은 아닌 충분조건 덩어리 (A and B and D)를 기준으로 보면
A는 이 덩어리의 충분조건은 아니지만 필수적(필요한) 부분으로 볼 수 있습니다.
이 개념을 John Mackie라는 철학자가 1960년대에 INUS조건이라고 이름 붙입니다. 이는 an Insufficient, but Necessary(Non-redundant) part of an Unnecessary but Sufficient condition의 약어인데, 필요조건은 아닌 충분조건 덩어리의 불충분하지만 필수적인 부분 정도로 번역할 수 있습니다.
뭔가 복잡해 보이지만, 직렬연결을 병렬로 연결한 이미지를 떠올리면 어렵지 않을 겁니다.
5. 병렬연결을 직렬로 연결
앞서 INUS조건이 직렬연결을 병렬로 연결한 개념이었으니, 반대로 병렬연결을 직렬로 연결하는 것도 상상할 수 있지 않을까요? 아래처럼요.
이러한 구조는 공학에서 결함 허용 시스템(Fault Tolerance System)으로 불립니다. B를 병렬로 이중화, 삼중화하여 다른 요소들과 직렬로 연결하면, B에 결함이 생기더라도 A, C에 문제가 없는 한 시스템이 정상운영될 수 있기 때문입니다. 생명유지장치를 운영하는 병원에서 비상발전기를 운용한다든가, 데이터센터에 화재가 날 경우를 대비하여 서버를 이중화, 삼중화하여 분산시켜놓는 일 등이 위와 같은 시스템으로 설명될 수 있습니다.
III. 전기회로와 논리적 추론
... 인강 찍어야 해서 나머지는 2편에서 자세히 다루겠습니다.
좋아요가 많이 눌릴수록 2편이 빨리 업데이트됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 수능 보면 10수임
-
현역 서성한 입학 자퇴 후 교대 자퇴 후 지방국립대(일반과) 입학예정 다 정시임.
-
맥날 다녀왔어요 0
1955랑 감튀 사왔네요 ㅎㅎ 이 시간에 국밥은 많이 헤비하겠죠...애초에 근처에...
-
이게맞나
-
반갑습니다 1
-
작년독재도 평균이 내키고 이번독재도 키큰애들많네 180인데도 위축되네..
-
작년에 하기도 했고 재종 다니고 있어서 개념강의는 패스하려고하는데 3등급대면 지금...
-
내가 선택한 경제과 악으로깡으로버텨야겟지...
-
지금 시즌제로 다니고 있는데 지금은 밥먹을 때도 그렇고 뭐 비상계단에서도 그렇고...
-
통합과학에 ㅈㄴ 진심이네
-
25수능 미적분 4점 문항 마지막 자료입니다. 1D2K는 공통을 포함해서 계속...
-
치피치피단 입성 5
성대합격으로 성공
-
기억에 남지 않는다 우리는 고급수학 수업 때 입실론 델타 입실론 엔하고 심지어 수2...
-
처음 알앗어
-
무한 고민
-
인기가 너무 많은 지역이다
-
얼음
-
음주하는중 1
헤헤
-
입실론 델타법 말고 15
라그랑주 승수법도 꽤 다양한 곳에서 쓰이는듯...
-
학교 3일 가는거 빼면 59일이긴한데 학교에서 알빠노하고 공부하면 되서 상관없음...
-
나도하고싶다
-
점수공개 보니까 추합 끝자락이거나 불합일 것 같네요 이미 재수했고 이제는 대학...
-
최근 4개년 평가원 기출을 분석하여 최대한 평가원 그림과 똑같아 보이도록...
-
와 나 다시 살아났다 17
3주 만에 식욕이랑 성욕 돌아옴 휴 곧 죽는 줄 알았잖아
-
걍 성대 다닐까라는 충동이 잠깐 밀려왔음....
-
3떨 0
점공까니까 가능성있는데 발표전까지 공부해야될까요..
-
싼 곳으로..
-
님들 몇살임요? 12
다들 몇살임??
-
중강경외시 5
음?
-
수학 6등급 재종반다니는데 국영수업이랑 수업습관까진괜춘은데 수학이좀별로라 그시간에...
-
입실론델타 나도 배워야 하는걸꺼같은 한숨나오는 예감이
-
도다인테 우와이?
-
이거 뭐임....??? 18
왜 맨날 리즈 갱신함...???
-
나머지는 허수들인가요? 아님 그녕 귀찮아서 점공 안하는 실수?
-
근데 그게 뭐임?
-
화학2 단과 0
강준호쌤 대기순번 30번인데 가망있나요
-
저는 이제 개념 60%정도 돌렸습니다!! 기말 끝나자마자 12월 중순부터 시작했고...
-
ㄹㅇ좆같네 ㅋㅋㅋ
-
현기증 나는 활주로의 최후의 절정에서 흰나비는 돌진의 방향을 잊어버리고 피 묻은...
-
저 무협지 좋아하는데 이거 실제로 되는 기술임??
-
앱실론델타논법 36
공머생들 해두면 좋음 지금 첨에 컬쳐쇼크임
-
친해져요 그러니까 친해지다 = 맞팔
-
어차피 선택에는 후회가 따를 수밖에 없고 태고의 옛적 통합사회 교과서도 비용과...
-
전 편 -...
-
작년보다 추합이 많이 덜 돌거같아서 그게 걱정임 하………
-
현실에 삼수 많음? 12
서울대는 꽤될거고 연고나 서성한도 삼수생 많은가요? 2떨하면 삼반수할거같은데 내가...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
친구 중에 세종대 23학번 있음 ㅅㅂ.............. 나재수할때그친구가...
-
컨디션 슬슬 돌아온다
오 좋은 글이네요
논리학을 전기회로로 비유하다니... 신박합니다
전기회로가 논리연산자에 완벽하게 대응된다는 것은 클로드 섀넌(Claude E. Shannon)이 21살 때 전기공학 석사학위 논문으로 발표한 내용이긴 합니다. 은 인류 역사상 가장 위대한 석사학위 논문, 20세기 가장 중요하고 가장 유명한 석사학위 논문 등으로 일컬어지고요.
저는 그 아이디어를 차용하여 수준을 더 낮추고, INUS조건 개념을 전기회로로 표현해본 것에 불과합니다. :)
‘섀년의 도깨비’의 그 쌔넌 맞나요?
네 ㅎㅎ
와..ㅠㅠ 정말 대단하시네요.
좋은 글 써주셔서 감사합니다!!
https://youtu.be/AiNqEz4yXh4
추론규칙을 추가하여 영상으로도 올렸으니 시청해보세요. 감동적일 겁니다 ㅎㅎ