[원빈/자작] 수학 8번째 킬러문항 업로드
안녕하세요. 킬러문항을 만드는 원빈입니다.
벌써 8번째 킬러문항이네요.
이번에는 일단은 해설을 생략합니다.
7개의 킬러문항이 더 있습니다.
최선을 다해 풀어주시는 분들께 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학벌은 마치 1
.
-
지능,키,외모 유전자가 박살난거 하나만은 탓하고 싶음... 근데 탓하면 안되는것을...
-
잘쓰면 캐리하지만 잘못쓰면 좆되는거지 ㅇㅇ
-
읽어봐야겠어
-
겨우 고등학교 3년가지고 뭘 그사람을 이해해
-
솔직히 지금당장 고려대 다니고 싶은데 졸업하고 구직할때 그 선택이 평생 날 후회하게...
-
팔로워삭제라고하나 아니면 차단인가?
-
세지 씹노베 이제 시작하려는 반수생인데 핵심기출 교재 보니깐 짧은 시간에 끝낼 수...
-
달은 파랗다 4
블루문
-
밤이되도 꺼지지 않는 비상구의 불빛만을 바라보며 살며시 눈물흘리며. 오지않는 성공을...
-
몇도짜리를 먹어도 알코올이 들어가면 무조건 3-4시간만에 일어남 몇시가됐던간에.....
-
개던질 예정
-
고등학교 ㅇㅈ 6
나름 순위 높네
-
과정을 즐겼으면 1
수험생활이 공부의 난도 때문에 각자의 현실적 여건 때문에 많이 괴롭고 고통스럽겠지만...
-
모스부호로말할줄안다
-
ㅋㅋㅋㅋㅋㅋ 3
전적대가 어딨는 대학인지 검색해봤는데 아ㅋㅋㅋ 걍 내가 바보였던걸로~
-
취르비ㅇㅈ 8
. . 아차차아차차 취르세카였네요~ 녹화오류로 초점이 나가버렸다네요~
-
부산 여행 0
실시간 새벽 바다
-
학벌이라는 틀이 0
사회가 교육이라는 자원을 투자할놈과 투자하지않을놈을 가려내는 가지치기라는 생각이...
-
웹으론 잘 안들어가게돼서
-
세 시간 후에 보자
-
화2 기체 2
화1 잘 되잇으면 좀 편하긴 할 듯.근데 안해도 상관없는 듯함
-
칼바람 포함 그 귀한 늅늅이
-
거지키우기 9
무한의 성장판 표창키우기 이런게임은 진짜 특이점 한번 찍으면 걍 게임 켜두기만 하고...
-
탱커, 브루져만 안하면 될 듯.탱커로 시작하면 맞는게 익숙해져서, 무빙이 구려짐
-
아니면 제1의인생으로 막을내릴까
-
이번 입시 끝나면 뒤도 안돌아보고 무조건 떠나겠다고 울면서 공부해도 막상 입시...
-
ㅇㅇ
-
물론 사람은 사회적 동물이라 타인이 봤을 때 눈살 찌푸려질 정도면 안되긴 함 그치만...
-
여기 수험생들 중에 저같은 미자가 얼마나 많은데 ...
-
정보) 현재 난리 난 네이버페이 대란 요약 .jpg 0
https://sbz.kr/zdk1D
-
수학 검토 연습 안한거
-
열등감은 남을것같음 걍 남의말에 너무 자격지심을 잘 느낌 지기싫어하는 성격과...
-
예쁘게 한 방 쯧쯧
-
고2 마더텅 한번 풀어보는거 괜찮나요? 비문학 공부는 따로 해본 적 없습니다..!
-
25수능 지1지2 응시자였습니다만 올해 지1은 가져가고 지2는 가차없이 버렸습니다...
-
그냥 대부분이 뇌내딥러닝해서 스스로 생각한거라 스스로 정립한 가치관이나 이런것도...
-
대표적으로 보면 삼차함수기준 ax^3+bx^2+cx+d 또는...
-
여자랑잘때에어컨틀고이불을혼자서독차지해
-
어른들은 학벌이 전부가 아니라고 말씀하시지만 그래 전부가 아니지, 하고 입시판을...
-
진심으로 좋아하는사람인데 만난지 1년좀안된시점부터 저렇게됐다고치면ㅇㅇ
-
국어 공부하는데 빨더텅처럼 모고형식인게 좋을까요 검더텅처럼 유형?별로 나뉜게 좋을까요
-
반갑습니다. 9
-
아 배고프다 0
벌써 2시간째 공복이야 ㅠㅠ
-
제곧내
-
고스트클럽 제발들어라 21
-
와 이게 되네 7
거의 망하려던 참이였는데 결국
-
아 감긴가 8
마른기침 준내하는중
-
라이브인데 미루다가 3,4주차 추가영상을 못 봤는데 혹시 따로 구매할 수 있는 방법이 없을까요ㅠㅠ?
5
제대로는 다음에 다시 풀어보겠습니다,, 어렵네요
1.f(x)=x^3+…이고 g(x)에 관한 정보는 딱히 없다
2. (다) 조건으로부터 f'(x)=3(x-p)^2-1 (p는 실수) 를 작성할 수 있고 f(x)=(x-p)^3-x+C에 대해 (나) 조건이 의미하는 바가 다음과 같음을 알 수 있다. 직접 f(x)와 f'(x)에 식을 넣고 정리하면 x=/1인 모든 실수 x에 대하여 (g(x)-p)^3-3g(x)(x-p)^2=(x-p)^3-3x(x-p)^2가 성립한다.
3. g(x)=x이면 편하겠는데 아쉽게도 이 관계식이 성립하는 것은 g(x)=/x일 때다. 따라서 음.. 논리적인 풀이는 이제 못하겠으니 대충 g(x)가 다항함수라고 찍고 -3g(x)(x-p)^2=(x-p)^3과 (g(x)-p)^3=-3x(x-p)^2가 성립한다 가정하면 모순이 발생하니 안되겠다. g(x)=ax+b라 해보고 식을 정리해보자.
4. 최고차항을 바라볼 때 관계식을 만족하는 a값이 2개 나오는데 a=1일 때는 g(x)=x라 모순이고 a=-2일 때는 g(x)=-2x+3이 나온다.
따라서 g(-1)=5
의도한 풀이가 아니니만 정답은 5가 맞습니다. 해설은 내일중에 업로드 예정입니다. 풀어주셔서 감사합니다!
이 사진과 같은 형태로 바꿔 푸는게 출제 의도이신가요? 이번 수능22번도 이와 같은 스타일인데 잘 출제하신것같아요 좋네요 한번 풀어보겠습니다
이 사진처럼 성립되는 지점은 변곡점밖에 될 수 없기에(평균변화율의 원리에 따라) 변곡점의 x좌표는 x=1이 됩니다.그래서 f(x)=x³-3x²+2x+c가 되는데,
구하는 값인 g(-1)=k(보기 불편해서) 라고 두면 사진이 성립됩니다
그래서 사진처럼 조립제법을 하면 k 즉,g(-1)= -1,5가 나오는데, 위에 가 조건에서 g(-1)=-1은 성립되지 않는다고 했기에 g(-1)은 5가 됩니다
재밌네요 좋은 문제라고 생각됩니다 특히 평균변화율 형태로 바꾸는 게 생각하기가 어려웠네요 만약제가 이번수능 22번을 안풀어봤으면 손도 못댈 것 같아요
고생하셨습니다! 피드백 감사합니다!
본 문항의 해설을 새로 업로드하였습니다! 감사합니다!
평균변화율로 고치니 길이 보이네요!
좋은 문제 감사합니다!
고생하셨습니다! 피드백 감사합니다!
해석해 보니 x에서 접선을 그었을 때 접선과 함수의 또 다른 교점의 x좌표를 g(x)라고 봐도 될 것 같은데
그렇다면 근의 합 원리에 의해 g(x)+2x=k 라고 접근하고 (가) 조건을 이용하여 정답을 구하여도 되나요?
이렇게 하면 정답은 나오는데, 문제에 포함하신 (다) 조건을 사용하지 않은 것 같아 마음이 찜찜하네요
제 사고에 비약이 있다면 한 수 가르쳐 주시면 감사하겠습니다
근의 합 원리에 의한 풀이가 어떤 것인지 잘 모르겠네요 ㅠㅠ 이글의 다음 글을 참고해주시면 될것같습니다!!
이 그림에서 삼차함수와 직선의 세 교점의 x좌표합은 항상 같으니까 g(x)+2x=k라고 식을 세웠습니다..
좋은 풀이군요! 사실 조건(나)를 올바르게 해석한 풀이 이므로 좋은 접근이라고 생각합니다. 다음 게시글의 댓글들에서 언급되듯이 g(-1)을 묻는것은 조건(다)가 없어도 됩니다. 그래서 문제에서 묻는바를 수정할 계획을 가지고 있습니다! 고생하셨습니다
좋은 피드백 감사합니다!!