책참 [1020565] · MS 2020 (수정됨) · 쪽지

2022-10-20 17:53:07
조회수 3,607

[미적 자작 문제] 무리수 e의 정의

게시글 주소: https://cheetar.orbi.kr/00058891974


사실 이 문제는 '무리수 e의 정의'라는 이름을 붙이는 순간 풀이 과정이 뻔하기 때문에... 숨기는 것이 맞다만 그래도 문제에 이름은 붙여야하니 ㅜ 달았습니다. 어떤 변수 a에 대해 a가 0에 한없이 가까워질 때 (1+a)^(1/a) 꼴이 수렴하는 값을 e로 정의한다는 점을 공부했죠? 이를 단순화해서 바라보면 어떤 극한식에서 밑이 1로 가고 지수가 무한대로 발산하면 e와 관련되었을 것이라는 생각을 해볼 수 있습니다.


여담이지만 [e^x-e^(-x)]/2는 쌍곡선함수 중 한 종류로 sinh(x)로 표기하기도 합니다. 추가로 cosh(x)=[e^x+e^(-x)]/2이며 [sinh(x)]'=cosh(x)와 [cosh(x)]'=sinh(x)가 성립하는 등 삼각함수와 유사한 성질을 나타낸다는 점에서 표기에 sin, cos이 들어간다고 알고 있습니다.


추가로 한국 고등학교 교육과정에서 다루는 6가지 삼각함수의 풀네임은 sine, cosine, tangent, cosecant, secant, cotangent입니다! 



+문제 아이디어는 작년에 논술 준비하며 봤던 어떤 문제로부터 얻었습니다! 다시 말해 온전히 제가 떠올린 것은 아니에요




[해설]

lim x->0인 상황에 대해 식 변형만 해볼게요! 핵심은 무리수 e의 정의를 활용하는 것과 초월함수의 극한을 활용하는 것입니다. 우선 '어떻게 무리수 e의 정의를 떠올리냐?'라는 질문에는 '지수함수 꼴 함수식에서 밑이 1로 수렴하고 지수가 무한대로 발산하는 것은 무리수 e를 정의할 때 사용하는 극한식과 같은 꼴이기 때문'이라는 답을 드릴 수 있습니다. 따라서 무리수 e의 정의식 (1+x)^(1/x)를 활용하기 위해 밑을 1+f(x) 꼴로 바라보고 지수에 1/f(x)꼴을 잡는 쪽으로 식을 변형해볼게요!



[x^3+9sin(2x)+[e^x+e^(-x)+2]/2]^[1/sin(2x)]

=[1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2]*[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)]]


이제 e로 수렴하는 꼴이 나왔으니 지수식을 정리해주면 되는데 삼각함수와 지수함수가 있으므로 sin(x)/x와 (e^x-1)/x 꼴을 띄울 생각을 해볼 수 있습니다, 우리는 초월함수의 극한을 학습한 상태니까요! (함수의 극한에서 lim를 분배할 때 핵심이 내가 아는 극한으로 극한식을 구성하듯 나타내는 것이죠? 수렴하는 걸 알아야 lim를 극한의 성질에 따라 분배할 수 있으니까요!) 따라서 지수의 식을 변형해봅시다.


[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)

=[x^2+9sin(2x)/x+[(e^x-1)/x-[e^(-x)-1]/x]/2]/[sin(2x)/x]

=[x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)]


이제 무리수 e의 정의와 초월함수의 극한을 활용하면 [1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2] 부분은 e로 수렴하고 [x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)] 부분은 19/2로 수렴함을 알 수 있습니다.


따라서 극한값은 e^(19/2), 답은 e^(19/2)



타이핑 했더니 문자들이랑 괄호가 좀 복잡해보이긴 하는데 '무리수 e의 정의'와 '초월함수의 극한'이라는 아이디어만 잡으면 다들 어렵지 않게 값을 구해내실 수 있을 겁니다. 초월함수의 극한 연습하기 좋은 문제라고 생각해요, 물론 식 자체가 복잡해서 수능에는 나오기 힘든 모양이라 생각하고 나와도 논술에 나올 만하지 않나 싶네요 ㅋㅋㅋ

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.