수학2 교과서 개념 정리, 수능 개념 정리 및 증명
수학2 (함수의 극한, 함수의 연속, 미분계수와 도함수, 접선의 방정식) 관련 내신 개념 정리.pdf
자료 만들다가 공유해두기 괜찮을 것 같아 남깁니다.
<교과서 개념>
1. 함수의 극한
2. 함수의 연속
3. 미분계수
4. 도함수
5. 도함수의 활용 1 (접선의 방정식)
<수능 개념 + alpha>
1. 구간 별 함수의 미분가능성
2. 곱함수의 미분가능성
3. 절댓값 함수의 미분가능성
4. 기함수, 우함수
5. 0/0꼴 극한에서의 미분계수의 정의 활용 (수능 수학 수준에서 로피탈의 정리 대체 가능)
6. 곱함수의 연속성
7. 미정계수의 결정 ((분모)->0일 때 (분자)->0)
8. 미정계수의 결정 2 ((분자)->0일 때 수렴값 0 아니면 (분모)->0)
9. 편미분
10. 대칭성
11. 구간 별 함수의 연속성
+교과서 개념, 수능 개념은 한완수에서 인용한 표현이지만 실제로 <수능 개념 + alpha>에 미정계수의 결정 같은 것들은 교과서 개념으로 분류되었던 것으로 기억합니다. 성질과 관련된 것들을 전자, 그로부터 유도할 수 있는 것들 등을 후자로 확인해주시면 감사하겠습니다!
0 XDK (+1,000)
-
1,000
-
올해스카이갈수있겠죠ㅠㅠ
-
[단독]“트럼프, 급진주의에 유리한 발언 안할 것” 3
[앵커] 트럼프 2기 행정부 출범이 한국에 미칠 영향도 관심입니다. 트럼프의...
-
현역이구요 선행을 안해놔서 이제 막 시발점으로 미적 끝냈는데 기출을 뭐로 하는게...
-
있는 건 상관없는데 물고 빨고 지랄들을 해라
-
확통 진짜 너무 안맞아서요 쎈이랑 시발점 워크북도 거의 3문제마다 한 번 막히는 거...
-
조금만 마시자
-
뭐 24수 언매처럼 나오면 틀릴수 있겠지만 그건 공부한다고 맞추는 것도 아니고 올해...
-
난 간다 5
공부하러 갈겡
-
수능언매다맞
-
집 왔어요!! 11
다들 오늘도 고생많았음뇨
-
진짜 선남선녀많구만 11
쭈구리가 되엇다
-
너무싫은게 1
오늘이 지나면 내일이 찾아오고 그렇게 지나간 시간이 모이면 수능날이라는거 러셀...
-
올해까지는 그래도 걍 별 차이없는거같은데 내년은 좀 다르지않을까 흐음
-
오늘도 여전히 16
여친구해요
-
지금 공부 시작하셨나요?
-
[일쩜녕강해린공팔] 줄이면 [일쩜녕린]
-
언매하면 공부할 탐구과목 하나 더늘리는거임
-
아버지가 복전하려면 최소 일년은 더 다녀야 된다는데 팩튼가요.. 재수생이라 졸업하면 나이가..
-
에바지?
-
공무원 시험도 수능처럼 시험보고 직군 선택하면 안됨? 1
1교시 언어논리 2교시 자료해석 3교시 상황판단 4교시 헌법 5교시 행정학+행정법...
-
진짜신기한거알아냇슴 11
우리몸의 70퍼센트가 물이잖음? 그럼 10명모였을때 7명은 물이란거임..... 물이...
-
사람 화 안 돋구면 입에 가시가 돋나 미친놈들이
-
시립대 기숙사 3
시립대 넣으신 분들 기숙사 뽑히면 생활관 국제학사 중에 뭐 쓰실 건가요 ?
-
마더텅 자이보다 좋나요?? 해설어떤가요
-
ㅈㄴ 한심해보이냐? 다하진않고 이쁜것만 골라서하긴함
-
국어: 김동욱 수학: 강민철 영어: 강민철 사탐: 박광일 과탐: 이원준
-
롤도 5ㄷ5 아니면 스트레스만 받고 대회도 베릴마냥 겜안돌리고 프로경기 보는걸로...
-
진짜 모름
-
수능전에 글 하나하나가 미친새끼였던 사람들이 수능 끝나고 좀 정상적인 척 하는...
-
설날연휴빼고 나머지 다 휴가인데 좀 바쁘고 생산적인 활동을 하고싶은데 무엇이...
-
아.. 10
공부 오늘 개 많이 한듯 제발 1등 해보자
-
도서관 혼자 쓰고 싶음 참고로 국어는 강민철, 수학은 김동욱, 과학은 이원준 듣고...
-
내가 S면 넌 21
나의 ?이 돼 줘 ?을 구하시오
-
하다가 안될 때 사는게 맞지 않나요 너무 비쌈 인강
-
글로 써진 걸 강사가 좀 알아 듣게 설명해주는 거랑 내가 책에 있는 걸 그대로...
-
S사 m사 으아아아아ㅑ아아
-
07현역 고민 1
수분감 미적 할건데 인강 다듣는게 좋나요?
-
피방가는중 3
으하하하
-
아 춥다 0
날씨 언제 정상화되냐
-
재밌당 히히
-
정시기다리는햄도 1-2점차 예상에 대부분 2점이하에 1점차가 정배?였던거같은데 ㄷㄷ
-
이변이 없다고 할때 설대 아래과 커트라인이 어떻게 될까요? 0
설대 영교 설대 국교 설대 정외(지약) 설대 인문 설대 인문(지역) 1차합 순위...
-
금테는 몇 명부터인지 알 수 있을까요
-
마이너스일까봐
-
이원준쌤 브레인크래커 2025버전 (3세대) 교재는 2
더이상 못 구하는 걸까요ㅠㅠ?
-
아 쉽다 쉬워 11
난 이번에도 화1을 해야겠어 하하 (3페이지급도 안 되는 문제들을 풀며)
-
물1 1컷 48 체감: 미적분 1컷 93 지2 1컷 47 체감: 언매 1컷 96
-
제발
-
제하하하난네가좋다,
-
띠용....... ㅈㄴ 고급진 느낌
사랑해요
참고로 9. 편미분 같은 경우 한국에선 대학 미적분학에서 처음 배우는 것으로 알고 있지만, '도함수의 정의'를 활용하는 수2 유형 중 'f(x+y)=f(x)+f(y)+ax^2y+axy^2-bxy+2'과 같은 항등식을 제시해줬을 때 편미분을 활용하면 도함수의 정의를 활용할 때보다 조금 더 빨리 문제를 해결할 수 있어 넣었습니다. 다만 파일에 있는 부분은 도함수의 정의처럼 편도함수의 정의를 써둔 것이고 실제 연산은 밑 영상 참고하시면 좋을 것 같습니다!
https://youtu.be/NKazLqcU-Fk
논술과 수능을 모두잡는 ㄷㄷ
증명은 한 번쯤 직접 해보시면 학습에 도움이 될 것 같고 결과적으로 수능을 보기 직전에는 자료에 있는 개념들을 활용할 때 '머릿속으로 증명을 훅 훑고 지나간다는 느낌으로' 조건을 잘 확인하고 활용해 문제 풀이 시간을 단축하시면 좋을 것 같습니다. 이를테면 '구간 별 함수의 미분가능성'을 사용할 때 구간 별 함수가 미분가능한지 확인하고, 가능하다면 미분계수의 정의를 쓰는 대신 함숫값이 같음과 미분계수값이 같음을 바로 이용하는 거죠! (그나저나 기본적인 것을 옮겨둔 거라 몇 고2 분들께 도움이 되었으면 했는데 생각보다 많은 분들이 감사를 표해주셔서 신기하네요 ㅋㅋㅋㅋ 잘 활용해주셔서 저도 정말 감사드립니다! 다들 '스킬'에만 의존하지 말고 왜 그런지 '증명'에도 초점을 두셨으면 좋겠습니다)
와 대박이네요... 근데 선생님 혹시 실전에서 로피탈의 정리 사용해보신 적 있으신가요? 아니면 하나의 극한식을 바라보는 색다른 발상 정도로 여기시나요?
고2 올라가며 처음 수2 배울 땐 썼었는데 고3 되고 수능 수학에 대한 이해도를 키워가는 동안은 로피탈의 정리를 사용하기 전에 확인해야할 조건이 까다롭다 느껴서 자료에 있는 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 극한을 처리했던 것 같습니다. 수2 수준에서 로피탈의 정리랑 연산량은 같은데 확인해야할 조건이 조금 더 직관적이고 교육과정 내라는 점에서 마음이 놓였습니다. (개인적인 생각으로 수2는 '미정계수의 결정'과 '미분계수의 정의'에 익숙한 상태를 만든 후 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 맞이하는 극한들을 처리하는 게 이상적이라 느끼고 미적분은 '0/0꼴 극한에서의 미분계수의 정의 활용'을 사용할 수 없는 분모에 있는 함수의 미분계수가 0인 경우 (lim x->0 [tan(x)-sin(x)]/x^3 같은 거) 등에는 인수분해나 유리화 등을 통해 해결하는 것이 이상적이라 느낍니다. 물론 이 예시의 경우 '테일러 전개'를 활용해 다항함수의 극한 꼴로 해결할 수도 있지만 ㅋㅋㅋㅋ 그건 로피탈의 정리보다 더 한 교육과정 밖 내용이니까요! 근데 말하다보니 대표 함수들의 테일러 전개식을 활용한 함수의 극한 처리에 관한 자료를 만들어보는 것도 재밌을 것 같네요, 미적분에서 삼각함수의 극한 처리할 때 1-cos(x)를 x^2/2로 생각하는 것 같은 거도 사실 테일러 전개식에 기반해 설명하면 직관적으로 받아들일 수 있거든요)
경제학은 위대합니다 ㅎㅎ
선생님 감사합니다. 혹시 미적도 가능하신가요?
자료의 핵심이 '절댓값 함수의 미분가능성', '구간 별 함수의 미분가능성', '곱함수의 미분가능성' 등 직접적으로 교과서에서 소개하진 않는 개념들에 대한 소개와 증명이라고 생각하는데 이는 미적분에도 똑같이 적용되기 때문에 어떤 내용을 다루는 것이 좋을지 잘 떠오르지 않습니다.
자료의 앞부분처럼 간단히 어떤 내용을 다루는지 정리하고 (수열의 극한에 관한 성질, 급수, 초월함수의 그래프와 극한, 초월함수 미분법, 치환/부분적분법, 구분구적법, 2차원 운동 등) 제가 공부할 때 중시했던 점들을 적어두는 건 마찬가지로 자료의 시작을 열기에 좋을 것 같아요.
중후반 내용의 경우 지금으로서는 초월함수의 극한을 다룰 때 sin(x), tan(x), e^x 같은 것들을 테일러 전개로 전개한 식을 테일러 정리, 테일러 급수에 기반해 소개하는 것, (다항함수)*(초월함수) 같은 식 꼴의 그래프를 미분없이 그리는 법 (대표적인 유형 기억), 치환적분법과 부분적분법 같은 것을 연습하기 위한 [sec(x)]^3 따위의 적분 정도가 떠오르는데 혹시 제가 다루었으면 하는 내용이 있을까요?
+첨언하자면 본글의 자료 뒷부분은 한완수 수1/수2 상중하에 기반해 서술했는데 미적분의 경우 제가 아직 하는 공부하지 않은 상태이고 상도 여러번 공부하진 못한 상태라 이번 자료만큼의 퀄리티 혹은 의미는 지니지 못할 것 같기도 합니다 ㅜ 비슷한 느낌으로 미적분도 제작해 올릴 수는 있겠으나 이번 자료만큼 깔끔하게 정리하기에는 제 내공이 부족할 것 같네요
초월함수를 제가 매끄럽게 다루지 못한다..? 라고 해야하나 그런 느낌이 있어서 한 번 질문을 해 보았습니다. 지금 올려주신 자료만으로도 충분히 감사합니다.
초월함수의 그래프를 매끄럽게 다루는 것과 관련해서는 이 영상을 참고하시면 좋을 것 같습니다.
https://youtu.be/xp7OG3xnC4w
감사합니다
수1이나 다른과목도 해주실수 있나요?
개인적으로 실전 개념과 그에 대한 증명을 공부하는 것이 학습에 큰 도움이 되는 경우가 수2와 미적이라 느끼긴 합니다만 고려해보겠습니다.