2023학년도 사관학교 수학 4점 문항 손해설지
2023학년도 사관학교 수학영역 4점 문항 손해설지.pdf
안녕하세요. 박민후입니다.
7월 30일에 시행된 2023학년도 사관학교 1차 선발시험 4점 문제에 대한 손해설지입니다.
공통 문항만 있으며, 손해설지의 내용 중 궁금한 점이 있다면 말씀해주세요.
파일에는 4점 문항 전부 수록되어있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사야 업뎃해놔라 갔다올게
-
둘째날에 독감 검사해서 독감 약 받아서 몸살 약 독감 약 같이 먹다가 어제 몸살 약...
-
중학교때 처음 12등에서 최종 2등까지 올렸는데 2학년때부터는 1,2등정도만 하다가...
-
하;;
-
왜 오늘이 마지막업뎃이노
-
으하하
-
점점 호소인이 돼가는 거 같은 기분이에요
-
난 외모가 2개 0
군대에서 여군 소대장이 나 안경 안쓴거 처음 보고 너 ㅇㅇㅇ인가? 물어봤었는데...
-
저 방금 한달만에 면도햇어용
-
현실 말투는 5
좀 더 흉포함
-
아 목 아파 3
정글차이야
-
거울 볼때마다 못생긴거 같음
-
난 개다른데 ㄹㅇ
-
요즘 상습적으로 0
술사요
-
ㅋㅋㅋㅋ
-
키 180 넘고 운동해서 3대400후반이고 얼굴도 남성성 강하게 잘생겼고 근데...
-
성형하고싶음..
-
오지말아줘 ㅠㅠ
-
이성은 당연한거고 동성도 뭐 기본적으로 더 친해지고 싶지 않나.. 그래서 난 동뱃님 호감
-
언제자고 언제 일어나시나요?? 전 오랜만에 에너지드링크 마셨더니 잠이 안 오네요 ㅠ
-
나도 기만 하나 5
주량 두잔이라 친구들이랑 마시면 술값 빼줌ㅋㅋㅋㅋ
-
테스토스테론이 부족한가봐요
-
오늘 본인 1
일어난지 이제 2시간 반됨
-
레이저제모는 꼭 하세요 삶의질이라는게바뀝니다.. 아프다길래 걱정햇는데 안아파서...
-
친구만들어서 같이다니기.
-
진학사 분석중
-
최근들어서 6
일주일에 500그램씩 몸무게가 선형적으로 증가하고 있어요
-
기만 하나 할게요 10
저 지금 제 인생에서 제일 무거움 그냥 배달 질릴때까지 시켜먹고 질리면 운동하고...
-
중독적이네 일론머스크는 신이다...
-
번따 당해봄 1
물론 신천지였어요
-
선배 없는 게 좀 걸리는데 상관없겠죠?? 전공커리나 이런 부분도,,
-
혼틈맞팔 5
잡담태그의 신 주기적으로 ㅇㅈ 함 댓글 열심히 달아줌
-
ㄹㅇ
-
덕코 수금합니다 2
-
사실 여부와 관계없이 '저 고등학생인데요' 시전 아닌가요...
-
나기만한다. 4
화가나기만한다 시발???!!!!!!! 내일이면!!!수능!!!악!?!!!!!!
-
언젠가부터 진짜 듣는 사람은 한 명도 안 보이고 밈으로만 소비되는 느낌인데..
-
길거리에서 번호 따여봄 16
신천지임 일단 따였잖아 한잔해~
-
5칸추합 0
300명뽑는데 5칸추합 가능성있을까요? 6칸~5칸최초합~5칸추합으로 떨어지긴했는데… 넘불안해요
-
취업, 입결, 과생활 등 통틀어서 둘 다 붙으면 어디? 이유가 있으면 이유도 알려줄 수 있을까
-
자랑하고싶었음. 흐흐
-
어쩌다가 겜을켜서
-
아직도 안 자는건 개처망한거겠지
-
외모 득 5
옛날에 어릴 때 어른분들이 잘생겻다고 먹을거 챙겨주신 기억들은 잇음 최근껀 아예 없음. 살찜.
-
스타듀밸리 해야하는데
-
사실 오르비는 학벌에 외모까지 다 가진 알파메일들의 집합소 아니었을까? 하는 생각이 드네요
-
집행시켜 5
-
지금 생각하니 미적과탐을 했던 과거의 나를 말리고싶다 1
미친저능아가 뭔 ㅋㅋ
넵 ㅎㅎ
와 이런 정교한 해설지 원했는데
공부에 도움이 되길 바랍니다 ㅎㅎ
QCC로 알게 되었는데 오르비 활동도 하시는군요 팔로우 눌렀습니다. 도움 많이 받고 있어요
공부에 도움이 되었다니 기쁩니다 ㅎㅎ
15번에서 부등호 나누신 것은 어떻게 하신건가요? 저는 그래프 보고 일일이 찾아봤는데,,, 궁금합니다!
식은 2acos(b/2)x를 (a-2)(b-2)만큼 내리고 절댓값을 씌운 형태입니다.
(a-2)(b-2)가 2a 이상이거나 -2a 이하라면 그래프 개형이 꺾이지 않을 것이고, 그 사이라면 그래프가 꺾일 것입니다.
이에 따라 f(x)와 2a-1 의 관계 양상이 달라지므로, 저렇게 케이스를 나눈 것입니다.
14번 ㄷ 에 어떻게 g`(b+) g`(b-)가 각각 다르게 나오나요??
g(x)는 x=1을 제외한 나머지 구간에서는 확실히 미분가능합니다. 따라서 ㄷ에서 b가 1이 아니라면, 좌미계와 우미계가 같으므로 둘의 차는 0이 나와야 합니다.
하지만 우미계 - 좌미계 = 4라고 나와 있으므로, b=1이어야 합니다. x=1에서 g(x)가 첨점을 갖는다면 좌미계와 우미계가 다를 수 있는 가능성이 있으니까요.
감사합니다
아 그런데 왜 앞에 부분이 우가 되고 뒷부분이이 좌가 되나요??
h->0+이기 때문입니다