무료특강은 못참지 - 목요일 18:30 라이브
안녕하세요.
유튜버 아니 수학강사
상승효과 이승효입니다.
유튜버는 농담이긴 한데요. 하하
지난주 선택과목 무료특강을 유튜브 라이브로 했더니
무려 300분가까이 신청을 해주셔서
구독자 150명 늘어주시고~
채팅으로 소통하면서 저도 즐겁게 수업했답니다.
도움이 되었다면 댓글로 소리질러~~~!
지난주 영상은 곧 비공개 처리 되니까
아직 못본 친구들은 얼렁 보시고.
아쉽게 기회를 놓친 학생들로부터의 문의가 많아
특히 반응이 좋았던 미적이를 위해
무료 특강을 다시 하려고 합니다.
확통/기하러도 조만간 또 할테니까 잠시 대기!
일시 : 4월7일(목요일) 6시30분부터~
시청방법 :
유튜브 "이승효의 상승효과" 스트리밍
내용 : 지난주 무료 특강에 이어서
극한과 미분법도 다루고 새로운 주제도 할거에요.
1차 무료 특강 들었다면 이번에 더 탄탄해질거고
새로 듣는 학생도 따라올 수 있도록 설명할겁니다.
내용은 의견 수렴하면서 진행할 예정이고요.
댓글과 이번 라이브 시청자가 많으면
매주 지속적으로 할 생각도 있으니
무료 특강 계속 듣고 싶다면
이번주에 꼭 라이브로 접속해 주시길!!!
이참에 목요일은 스케쥴 빼고 상승효과 가즈아!
마침 새로운 영상이 올라갔으니 가볍게 시청해주세요~
유튜브 채널 구독과 알림설정까지 해주시면
특강 라이브 방송이 켜질때 공지가 간답니다.
그럼 조만간에 만나요!!
<이승효T 간단 소개>
서울대 컴공 졸업
도쿄예대 음악대학원 박사수료
현) 디오르비 출강
2021년 오르비 단과 매출 1위
전) 메가스터디 러셀 출강
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백분위 91 97 2 61(4컷) 94 쩝..
-
미친놈아
-
뭉탱이 0
.
-
심심한데 헤겔정반합으로 증명해낸 세계속 닉슨쇼크를 거쳐 발전한 카메라 차량주위기술을...
-
내가 84니까. 반박 안받습니다 내 말이 다 맞음
-
드릴은 매년 2
전문항 신규인가요?
-
태블릿에 키보드 마우스 같이 들고다니는 전제 하에 ㅇㅇ
-
여러분 단과 다녔을 때 15
조교가 좀 마음에 든다 / 오 괜찮네 싶었던 게 어떤 게 있으셨나요 외모 말고 좀...
-
09년생 여르비 등장 19
뀨우
-
슬럼프온다 0
저번 중간고사까자는 공부하는 만큼 성적나와서 공부하는 거도 재밌고 그만큼 계속...
-
메디컬 가려고 목숨걸고 10수까지만 하시고 그 이후엔 따른 세상도 있단걸 알고...
-
오류있을수있음 검토안하고 막냄 물체a가 오른쪽 방향으로 3m/s의 속도로 이동하고...
-
알긴 알지만 그걸 아직 입시 다 안 끝난 자식에게 해야겠나요
-
심심해
-
흠그정돈가..
-
면접 0
이번에 수시 하나 붙은거 면접 3배순데 부모님께서 가라 하셔서 갔거든요,, 근데 제...
-
[속보] 동덕여대 학교 측, 피해액 전액 면제하기로... 협상 타결 2
네 헛소리고요 한번에 한과목씩 몰아서 공부하는거 어떻게 생각하심? 정시러로 돌린지...
-
ㅈㄱㄴ
-
중앙대 수리논술 1
확기 아예 모르는데 가면 시간낭비겟죠? 걍 안가듀 ㄱㅊ겟죠?
-
가천대 클라우드공학과 들어가면 100프로 카카오엔터 취업보장인가요? 0
전액장학금 취업보장 이게 100프론지 모르겠네요
-
설인문 봐주세요 1
제2외 8-9등급입ㄴ다
-
한시간을 쳐늦네 10
오면 한 대 때려야겠다
-
어떻게 빠지는지 아시는분? 롯데월드 가기 싫은데
-
김범준t 커리 +한완기로 가려는뎅 미적분은 스블이 12월중순쯤 개강이라길래 ㅜ...
-
그럼 합격한 대학한테 입학금 넣어놓고 자퇴하는건가요???
-
그냥 보편적으로. . 솔직히 나는 평가할 실력도 안되지만
-
수능 ebs연계에대해 어케 생각하심?
-
ㄹㅇ
-
뻥임뇨
-
상식적으로 이과가 수능 수학 1 미만일 수 있음뇨? 7
불가능함뇨
-
안녕하세요. 작년 2023년도 11월경 정지웅 선생님의 강의에 대해 험담한...
-
의료소송은 한국 고유의 전통문화다
-
#~# 0
수능 성적표를 내놓지 않는 평가원은 #~# 같은 집단이다. #~#
-
편의점에서 도수 낮은 맥주 추천좀요 그리고 처음 마시는데 한캔 다 마셔도 되나여
-
스펙 평가좀 5
185 300 120 원세대 국제캠 재학중 수능 평균 3등급 어떰뇨
-
수능치느라 고생하셨고, 남은 입시도 파이팅하세여
-
그냥 피부미용같은거 해
-
확통만 안밀려썼었어도 됏을텐데하…
-
아니 문제는 자연계가 터젔는데 우리가왜..
-
두 학교 다 아직 미정인가요??
-
그냥 놔두면 어차피 죽을사람 살려놓으면 왜 그딴식으로 치료했냐며 돈물어줘야함
-
오늘 애플스토어가서 보고옴 내일 사기로함
-
진학사 보니까 왤케 큰거같지
-
동국대의대면 6
의대 중 어느정도 위치임 지사의? 아님 지거국~지사의 사이? 인식 어때염
-
실제 평가원 등급컷에서도 3합5 4합8 충족할 수 있을까요? 논술이 끝나도 마음이 불편하네요ㅠㅠ
-
흠...
-
여대 이런저런 2
이대가기엔 성적이 부족한데 숙대가 딱 안정으로 나은거같아서 고민인데 또 요즘...
-
1컷 96 2컷 88 3컷 76
-
여쭤봤는데 2등급 블랭크는 쉽지 않아보임 2컷 48은 가능성이 조금 있어보인다 ㅈ됐다 ㅋㅋ
선생님, 이번에도 동영상으로 부탁드려요 ㅠㅠ 감사합니다
라이브로 접속해주세요~
선생님 이번 동영상 내일까지는 들을 수 있겠죠?ㅜㅜ
네네~ 얼른 듣고 또 와요
선생님 안녕하세요! 다름이 아니라 중학도형(수1 삼각함수의 활용)을 공부할 때 정리/정의/증명을 주의 깊게 풀어야 하는 것은 알겠습니다.그런데 시험 해설강의를 보면 선생님들은 보조선을 너무 잘 그으시고 구해야하 하는 값을 향해 알고리즘 처럼 쭉쭉 가시는데 이런 실질적인 보조선과 중학도형의 실전적 공부는 어떻게 해야 할까요? 특히나 삼각함수 활용은 기출문제가 많이 없어서 제가 태도나 행동영역을 배워도 어떻게 체화하고 적용할 지 모르겟습니다!
선생님께서도 답변을 주시겠지만 제가 아는 선에서 답변 드리겠습니다.
일단 보조선을 긋는 이유가 뭘까요?
도형 풀이의 기본은 결국 내가 모르는 정보들을 아는 정보들로 표현하는 것인데(정의/정리/증명의 원리들을 이용하여) 그러려면 내가 모르는 정보를 아는 정보로 표현할 수 있는 보조선을 그어야겠지요.
예를 들어, 원과 접한 어떤 직선이 주어져 있다고 해보면, 원의 정의는 중심과 반지름으로 정의되기 때문에, 또한 접점에서 수직인 직선은 원의 중심을 지난다는 성질(정리)이 있기 때문에, 접점으로부터 원의 중심까지 이은 선이 등장할 수 있겠죠.
이등변삼각형의 경우 밑변의 수직이등분선이 꼭짓점을 지난다는 성질을 통해 꼭짓점에서 이등분선을 그으면 밑변이 수직이등분되는 것이구요.
실전적 공부라는 것도 결국 이런 식으로 생각하시면 될 것 같습니다. 결국 도형의 성질을 잘 알고 있으면 보조선이 그어질 포인트는 대략 보인다는 거죠.
기출 소스같은 경우는 조금만 생각을 확장하면 교사경, 고2 기출이나 EBS 문항들도 활용할 수 있을 것으로 보입니다. 그리고 오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요.
-지나가던 한 수학과 재학생이 올림
정성스러운 답변 감사합니다 정말 유익했어요!!
훌륭한 답변 감사합니다 :) 제가 덧붙일게 없네요~
오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요. -> 맞습니다.
허걱 이건 무조건이다
혜교님 어서와~
선생님 혹시 현강질문 관련해서 쪽지보냈는데 확인한번만 부탁드려용
답변드림~
샘의 에너제틱한 모습에 감동받았습니다. 감사합니다:)
에너지 끌어올려~~~!