이거 아무도 못풀죠?
ㅋㅋㅋㅋㅋ자연스레읽힘 ㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 0
-
군대에서 수능을 2번 보는데 , 군대 첫수능 보고 합격만하고 다시 군대인데 이...
-
ㅇㅈ 1
나만큼 한사람은 없을거야
-
비문학 문학 상관없이 추천좀여 라노벨x 수능교재x
-
암기랑 말빨이 문제네 하 평소에 말 잘 못해서 일부러 더 철저하게 하긴 했는데...
-
노베인데
-
아내가 웃옷 벗고 아파트 문 열어놓고 감자 깎다가 장면 바뀌고 아내가 자기의 둥근...
-
나도 ㅇㅈ 5
제발 박제되지 마라탕
-
기차지나간다 6
ㅠㅠ 10시에 학교를 가야해요 ㅠㅠ 부지런행
-
ㅇㅈ 7
총 68페이지 ㅋㅋㅋ 뭔 시험범위냐
-
자러가면 스탑
-
동아리 안해 연고전 아카라카 안가 rc안해 교양도 다 남초야 그리고 걔들도 다...
-
걍 맨날 중간에 깨네 오늘은 머리까지 아프군
-
과탐 두 개는 백분위 96정도이고 국수는 2 3인 상황에서 최대한 유리하게 갈 수...
-
나도 ㅇㅈ 6
제발 박제되지 마라
-
그럴러ㅕ면 전문직이 되어여할텐데……
-
서울로 가고 싶어..
-
이거들어바 19
굿
-
재수생 용돈 5
얼마가젓당함?
-
된다 하더라도 그길을 모르니 볼 엄두도 안남ㅋㅋㅋ그길만 알려준다면 몇년이고...
-
다 자냐 11
바보들 크크
-
예전에 현돌 기시감 하다가 ㅅㅂ 이걸 다 해야 한다고? 하고 손절쳤는데 1컷이...
-
기차지나간당 8
부지런행
-
삼수해서 3따리면 전문직 시험은 처다도 안봐야겠죠? 1
열심히 했는대 수능은 유독 점수가 안나오더군요…
-
어차피 평생 쓸데도 없는거
-
편의점 대부분 거리가 멀거나 야간만 뽑음 지방이라 높은 확률로 최저안줌 단기로...
-
기차 지나간당 2
부지런행
-
진짜 잠 3
ㅂㅂ
-
날 붙여다오..
-
내년 목표 4
1. 재수 성공 2. 개명 성공 3. 캐논락 완주 성공 4. 오르비 끊기
-
근데 아싸랑 아싸는 서로 집밖으로 안나가서 만날일이 없다는거임
-
ㄹㅇ 잘 시기를 놓쳐서 지금 머리 겁나 아픔 ㅇㅇㅇㅇㅇㅇ
-
무물받음뇨 2
잠이 안옴뇨
-
체감이 안되네 내가 남들 글을 신경 안써서 그런건가
-
이게 여시회원 80만명의 힘인가 난 지금까지 여초화력을 이기는걸 거의 본적이 없음
-
가/나, A/B 중복은 풀면서 가, B 기준으로 나, A에서 중복된 거 지우지 뭐 빠진 거 없죠??
-
34444 언미생지 생명은 높4뜰것같아요ㅜ 문이과 상관없이 인천경기권에서라도 불가능할까요?ㅠㅠ
-
3시간동안유튜브만봣네
-
머리 멀루하지 1
수능 끝난지가 언젠데 아직도 고민중 머리 어지간히 길어서 웬만한건 다될듯여 추전좀 부탁드려요
-
주말엔 한국어가 잘 안들림
-
유루캠좋다 3
잔잔한게 또 느낌이있거든요
-
아 우리 민석이가 그렇다고 하면야 바로 세체탑 도란이다 아 진짜 어쩔수가 없네 근데...
-
대형특수 50점 출결 7점 가산점 13점 전공학과 20점인데 계산상 90점 나오는데...
-
가 세상이 아침부터 움직이니까 그런거임?
-
현재 돌아갈 전적대 있는 상황 + 올해 수능으로 적어도 옆구르기 가능일 듯 한데...
-
정해진 시간 되면 핸드폰 못 키게 만드는 뭐 그런 거 없나요 4
1시 전에 자려했는데 말도 안 됨...
-
이거 다 외우면 1등급 나오겠지
-
성적표뜨고 좀 나중에 받나요 접수직전에
-
진짜 건실하게 산다
강대에서 어제 배운거 ㅋㅋ
극한값 분배하는 건 항이 유한할 때만 성립하니까(?)
라고 어디선가 본거같은데...
이게 맞는듯 ㅇㅇ
먼가 3번째줄에서 4번째줄 가는 게 틀린 거 같은데 ...
설명은 못하겠다
비슷한걸 교과서에서 봤는데
정작 해설을 안달아놓음 ㅁㅊ
생각해보라고 하고 답은 안알랴줌 나쁜놈들
원래 교과서에 ~알려져 있다. 이런 식 서술은
니들 수준으로는 이것에 대한 증명은 꿈도 꾸지마!
라고 읽으면 된다고 한 모 수학강사가 말씀하신..ㅋㅋ
엔분에 엔을 엔분의 일로 엔개로 나누고 극한을 보내면 무한대분에 1이 n개 밖에 없는건데
엔분에 엔을 극한보내면 무한대분에 1이 무한개 있는거잖아요 따라서 저렇게 분할해서 극한보내면 안됨
뭐라는거야 설명을 못하겠네 ㅠㅠ
첫번째줄 맞나요? n/n은 상수분의 상수로 나타낸것이지 n이 변수가 아니잖아요....그러면 그 n을 무한대로 보낸다는건 n을 변수로 인정해버린다는 뜻이 되는데요?
즉 n/n 과 lim( n/n)의 값이 같은 건 우연의 일치일 뿐 동치시켜서 풀면 안될꺼 같아요!
우와;;; ㅋㅋㅋ
이거 설명좀 해주시지 ㅠ
님이 설명한게 맞습니다 ㅎ 유한개까지만 성립되요
오홍~
같은 내용 포만한에 질문했떠니 난만한느님이 답변해주시길,
lim(an+bn)= lim(an) + lim(bn)
이라는 성질은 an, bn이 수렴하면 성립한다고 배웠는데,
이것의 따름정리로 증명할 수 있는 한계는 an bn cn ... 이 유한개일때이구요.
그 개수가 무한개일때에는 함부로 극한의 성질을 적용할수도없고, 교과서에서도 배운적 없고, 증명하지도 못합니다. 틀린명제니까요
즉, 항이 무한개일 때
lim(an+bn+cn ...) = liman + limbn + limcn + ............
이런건 없습니다.
라고 하십니다.