[박재우T] 다르부 정리와 도함수의 연속성
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
밤새고 5시에 운동갔다가 바로 자야지
-
흑 0
3명 모집 12명 지원 1등은 빠짐->4등까지 합 ㅎ
-
1월은 면접이랑 대회땜에 바쁘고 2월은 여행다닐거같으니...
-
고등학교때 서울대제외 가장 가고 싶었던 학교의 학과인데 물론 붙어도 나이때문에...
-
술마시러나감 1
이시간에불러내네
-
https://krll.me/3O8G19
-
드디어 탈릅 1
예상외로 점공까지 갔고 아직 서비스중이지만 분명해 100% 맑음 ㅇㄹㅂ했던 동기들은...
-
ㅋㅋㅋㅋㅋㅋ 3
가만히 30분 동안 누워 있었는데도 잠이 안 옴 잡생각 좆되네
-
다들 안자여?
-
대구카톨릭의대 추합마니 도는지..컷은 어느정도 일지..아시는 분.. 3
대가대 의예 추합많이 도나요? 컷은 어느 정도일런지.?
-
텍스트 많은 선택과목에 치중된 글이긴 합니다 원래 공부 못하던 것도 아니고 과탐도...
-
서울대 생명과학부 컷 예측되시는 분 계실까요?..
-
배터리 88% 2
팔팔
-
자다 깼어요 6
사실 아까 진작 깼는데 게시글에 우울썰 우웅썰 우흥썰 밖에 없어서 그냥 껐어요
-
지금 배터리 100%임
-
열등감 극복방법 2
우월해져서 우월감으로 바꾸면됨
-
형 진짜 잔다. 4
ㅂㅂ
-
팰월드 때문에 또 깨졌네 ㅈ됐다
-
그러면 살 이유가 없는거같은데...
-
진학사 칸수변화 66666655555555이런감성이었는데
-
으 연초땡겨
-
https://krll.me/3O8G19
-
내일부터 하루 루틴에 오르비 끼워야지
-
이거보실래여 7
귀엽죠
-
점공ㅁㅌㅊ 2
ㅁㅌㅊ죠
-
색감ㄷㄷ
-
보드게임카페 알바 시작함
-
자러가야겠다 하
-
컵라면 추천점 7
편의점가서 사올 예정
-
바이바이 3
잘자
-
8시에 잠들어서 방금깼어요
-
뷰봇이지뭐~
-
작년에 반애서 남자애들 커뮤 한다 하면 경멸표정<-만 햇는데 해보니까재밋네 미안했다~~
-
존잘존예면 현생에서 연애를 해라 존못이면 그냥 하지마라 상처만 남는다 이거임
-
ㄹㅇ뇨이
-
그냥같이놀고잇는데 14
알고보니까뱃지가잇거나 닉네임이파랑빨강이면 너무서러움,,,, 너넨 나랑놀자격이 없서ㅠㅜ
-
잘게요 2
다들 잘자요 다음에 봐용
-
간다 3
꿈나라로
-
ㅇㅈ 9
특정 안되겠지..
-
나중에 언제한번 옯스타로 해야겠다 ㅎㅎ
-
내가 아는 대란은 큰 달걀인데
-
ㅇㅈ 3
가채점표 ㅇㅈ
-
https://krll.me/3O8G19
-
피카츄 ㅇㅈ 0
귀여워
-
저 내릴게요 0
.
-
안타깝네여 옛날에 가려서 올린건데
-
그럼 내 콧구멍에 대고 감기귀신이.. 아이고난 남잔데
첫번째 댓글의 주인공이 되어보세요.