저도 수능형은 아니지만 자작문제 투척ㅋㅋ
작년 7월달에 만들었던거에요
조건 추가: E(X)=1입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
후회 몇가진 내 정신 상태 밑천 일어나서 집어든 폰으로 용서와 약을 구했지우리 관곈...
-
약대가서 꿀빤다 ㅇㅈ? 한의학 그거 다 사이비 아닌가.
-
휴게소가 도로 위에 걸쳐있음
-
제발요
-
ㅇㅈ)) 7
펑 따봉
-
올해는 한까없나 1
한의대 컷좀 마구 낮춰줘요
-
많이 읽은 건가요?
-
한문제만 더 맞추면 탐구평균 2띄워서 고대설대 최저 맞추는데 에라이 씨잎새과목 왜...
-
엑셀로 하는건 알겠는데 잘 아는 사람읶음?
-
https://orbi.kr/00065763225 이 글을 쓴 사람도 교원대에서...
-
원점수(메가기준 백분위) 화작 93(95) 확통 96(97) 영어 4 경제...
-
ㅇㅈ했으니 0
-
재수한겁니다 공통은 아깝다는 생각이라도 드는데 미적은 아깝지도 않습니다 삼반수를 할...
-
진짜에요?싸서 그런가
-
이거 가능성 있다고 보시나요...전 아무리 봐도 이 정도 난이도는 아닌 거 같은데..
-
마크재밌당 2
크리에이트 모드랑 노르트스타 끼고 공장짓는중
-
수학 17번 틀린거 진짜 미쳐버릴거 같다 진짜 하.....
-
훌리님들 2
님들같으면 서울사는데 건국대 높공 vs 경희대 자연대 (서울캠) 중에 어디감
-
흑역사 진짜 많다ㅋㅋㅋㅋㅋ 어후 빨리 학교옮겨야지..
-
세계를 속여라 2
나는 매드사이언티스트 호오인 쿄마!
-
프사완 0
흐흐
-
히히
-
맞다고 생각함뇨이 아직 이대가 갖는 여대 1등자리 아우라가 20대 후반 누나들한텐...
-
육군 질문 6
해군 출신이라 잘 모르는데 점프 뛰다가 들키면 어떻게 되나요?
-
101점임
-
의외로 잘 쓰네요
-
ㅋㅋ 작년에 개꿀잼이었는데
-
훨씬 부담도 덜 가려나 화작에 기하 근데 기하 멘탈 중요함?
-
그나마 인생 덜 조져서 다행이네..
-
다음주 신검인데 3
4급은 어케해야 뜨는거임 ? 돼공도 요즘되나 ㅈㄴ가기싫음
-
다들 닉 유래 적기 29
ㄱㄱ 나는 그냥 미코토 프사에 어울릴만한걸로 정함
-
전역 얼마 안남은 말년병장입니다 수능 끝나니까 할게 없네요 현재 학적은 인하 아주...
-
아무거나 고 선넘ㄱㄴ
-
4합9vs3합6 0
전자는 과탐 1개 후자는 과탐 평균 절사 뭐가 더 어려울까요?
-
괜찮으려나..
-
무제한으로 수능 응시 ㄱㄴ?
-
ㅈㄱㄴ. 몇문항정도 있는지
-
2024년 숙명여대 가을 캠퍼스 정경입니다. 단풍이 예쁘네요. 숙명여대 본관입니다....
-
외대 논술 1
재밋겟당 ㅋㅋ
-
홍대수리논술 2
홍대 신소재 적은 사람 3합 8 다 맞췄겠지…?
-
수능 영단어 1
보통 뭘로 외우시나요? 이번 수능 1 받긴 했는데 모르는 단어가 나와서 존나...
-
에휴시발
-
영어 인강 1
지방 일반고 최저러입니다. 현 고2 10모 5등급으로 노베입니다. 대성 메가 둘다...
-
머리 너무 아프다 12
갑자기 두통심해짐 부여잡아야 그나마 좀 나아지는데
-
어릴적 ㅇㅈ 4
-
동뱃달면 17
오르비 뱃지카르텔 들어갈 수 있나요?
-
1이나 2등급 중에
-
냥냥
-
대학가서 0
Jlpt와 칸켄2급 공부하기
-
닉네임이 이꼴인 이유 13
아싸라서 사진찍는게 취미임
CLT (central limit theorem) 혹은 큰 수의 법칙에 의해 불연속이요. (단, 0
아 문제에 조건이 좀 빠졋네요 E(X)=1 추가!
제가 문제를 잘 이해 못 했는지 X~B(n,p) 라는 뜻 아닌가요? 그럼 평균이 np인데 1이 될 수 있는지.. (p 고정 n만 변화한다면)
n, p 모두 변하면서 np=1이라는 뜻이였는데... 혹시 잘못된 부분이 있나요...?
아니에요ㅎㅎ 문제 느낌상 p가 고정된 어떤 값인 거 같은 느낌이 들어서 그랬네요.
답은 f(0) = 1/e , f(h) = 1 (h=0아닐 때)이라서 불연속.
p = 1/n 이니까, |X-1|<=n|h| 일 확률을 구해서 n->무한대 보낸 게 f(h).
h=0 이면 X=1일 확률이니까 ((n-1)/n)^n-1 이고 극한은 1/e.
h=0 아니면 X=1 근처 충분한(?) 구간을 포함하니까 CLT에 의해 n->무한대 일 때 극한은 1.
혹은 CLT 안 쓰고 증명하려면, 임의의 자연수m 을 잡고, m < n|h| 가 되게 충분히 큰 n을 잡은 후, 이 n에 대해
(0<= X <= 1+ n|h|일 확률) >= (X=0,1, ... , m일 확률) > ((n-1)/n)^n (1+ 1 + 1/2! + 1/3! + ... + 1/m! ) ((n-m)/n) ^m
이고 양변 극한 취하면 f(h) >= 1/e * e * 1 = 1. f(h)<=1 이기도 하니까, f(h) =1.
만약 정확한 값 (h!=0에 대해 f(h)=1 )이 필요하지 않다면 더 쉽게 증명 가능합니다. 고정된 h에 대해 n이 1/|h| 이상이면, |X-1|<=n|h| 가 X=0,1,2 는 적어도 포함하는데, 이 세 확률만 더해서 극한 보내도 이미 1/e (1+1+1/2) = 5/(2e) 라서 그 극한 lim_{h->} f(h) 도 5/(2e) 이상이라 f(0) = 1/e와 같은 값이 될 수 없으므로 불연속.
오 매번 제가 생각지 못했던 풀이를 보여주셔서 감사합니다ㅎㅎ
아닙니다^^ 저야말로 칸타타님 매번 좋은 문제 고마워요. 다시 읽다보니 약간 말을 빠뜨렸는데, 마지막 전 문단에서 n->무한대 극한 후, m->무한대 극한도 취한 거에요~