수리영역 기출문제의 논리적 접근 (11년 수능)
지수/로그함수 그래프 해석 문제 중 극악의 난이도를 자랑하는 걸로 유명한 문제입니다.
일단 수능적으로 접근해본다면
ㄱ 보기는 '초월함수에 관한 방정식의 일반적인 해법은 없다.' 라는 사실을 통해 의 값을 직접적으로 구할 수 없음을 알고,
주어진 근방의 값은 (1/2)과 1을 그래프에서 대입하여 대소를 비교해보면 됩니다.
'초월함수에 관한 방정식의 일반적인 해법은 없다.'는 것을 알면 그 방정식의 특정값을 구하려는 불필요한 시도를 피할 수 있습니다.
실제로 올해 13년 6월 평가원 30번 문제도 위와 같은 사실을 바탕으로, f(n) 값을 구하려할 때
n을 대입하여 a를 구해나가려는 것보단 a값을 설정한 후 f(n)값을 구하는 것이 더 효율적이라는 판단을 할 수 있었습니다.
또한 위의 문제와 같이 지수/로그함수 그래프 해석문제에서 어떤 상수와 교점의 x,y좌표값을 비교하려할 때도
이런 생각을 가지고 접근한다면 시간을 많이 절약할 수 있을 것입니다.
ㄴ 보기는 지수함수와 로그함수의 역함수 관계를 빨리 알아채는 것이 핵심이었습니다.
실제로 이 해의 6,9월 모의평가에서 지수함수와 로그함수의 역함수 관계를 파악해야 하는 문제가 모두 나왔고
그게 그대로 수능까지 연결되어 나왔습니다. 학생들이 그 해 치르는 6,9월 모의평가의 분석이 얼마나 중요한 지 알 수 있는 부분입니다.
ㄷ 보기는 ㄴ에서 알아낸 역함수 관계를 그대로 이용하여 문제를 해결합니다. ㄱ ㄴ ㄷ 연관성을 파악해야 하는 문제죠.
(이 문제에서는 ㄱ이 독립적이긴 합니다.)
그리고 이런 부등식을 해석할 때는 항상 '기울기'를 염두에 두고 있어야 합니다.
지수/로그함수 그래프 해석문제의 난이도가 급격하게 올라갈 수 있는 부분이 바로 이 '기울기로의 해석'이기 때문에
어떤 식으로 응용되는지 연습을 통해서 꼭 익혀보셔야 합니다.
(하지만 요즘은 이 패턴의 문제가 많이 사라지는 추세이기 때문에 너무 많은 시간을 투자하시는 것은 비추입니다.)
ㄱ ㄴ ㄷ 보기의 연관성이 있는지 없는지 파악하는 부분과 대소관계를 '기울기'로 해석해보는 안목을 이 문제로써 알아가시면 되겠습니다.
이제 이 문제의 논리적 해석을 시작해보겠습니다. ㄴ 보기는 역함수 관계라는 것만 밝혀주면 딱히 비약없이 논리가 진행됩니다.
따라서 그래프에서만 확인해보았던 ㄱ 보기와 ㄷ 보기를 어떻게 엄밀하게 푸는지를 소개해보겠습니다.
이 증명의 아이디어는 ㄱ 보기를
로 바꿔서 생각하는 겁니다. 이렇게 생각하면 중간값의 정리를 사용해야한다는 생각이 바로 들기 때문에 쉽게 증명할 수 있습니다.
참고로 위의 방정식의 근이 유일하다는 것을 그냥 넘어갔는데, 문제의 조건이 그래프로 주어져있고,
그래프에서 근이 유일함을 확인할 수 있기 때문에 증명을 따로 하지는 않았습니다.
그러나 만약에 이 부분을 증명해야 한다면
가 감소함수이면서 ((1/2),1)를 포함하는 어떤 구간을 잡아서 보이면 됩니다.
감소함수 f(x)가 0이 되는 x는 하나밖에 없음이 자명하기 때문입니다.
참고로 유일성에 대한 증명은 그 요소가 2개가 있다고 가정한 후 결과적으로 그 2개가 같음을 보이면 되는데,
제가 이 글을 연재하면서 보니 아까처럼 함수를 가지고 와서 그 함수가 증가 또는 감소임을 이용하는 것도 많은 거 같습니다.
그래프에서는 기울기로 확인한 것을 함수로 만들어서 확인해본 겁니다.
그래프에서는 기울기로 확인한 것을 함수로 만들어서 확인해본 겁니다.
함수로 만드는 사고과정을 정리해보자면 (1,0)과 이어지는 점들을 여러개 조사해보면서 기울기의 값의 변화 양상을 추론해보고,
그 양상이 감소임을 알아채서 그것을 함수로 만든 겁니다.
여기서 f'(x)는 부호판별만 하면 되니까 g(x)라는 함수의 부호가 어떻게 되는지만 보면 되는데,
공교롭게도 g(x)>0라고 나와주네요.
이를 통해 증명에는 직관이 전혀 쓰이면 안 되지만, 증명을 시작함에 있어서는 직관적인 안목이 아주 중요함을 알 수 있을 겁니다.
----------------------------------------------------------------------------------------------------------------------
저번에도 이런 글을 하나 올렸는데 앞으로 자주 올려볼게요.
좋은 실력은 아니라서 여기서 검토 좀 받고 다듬어야 할 필요성을 느꼈습니다.
오류 있으면 지적해주세요 감사히 받겠습니다.
P.S 블로그에도 이 글을 연재하고 있는데 현재 10편 정도 작성했습니다.
블로그에 올려놨다가 어느 정도 정확성이 있다고 판단 되면 오르비에도 올리려고 하는데
혹시 시간 남으신다면 들러서 의견 나눠받았으면 좋겠네요.
그리고 이외의 어떤 질문도 다 받습니다 ㅇㅇ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
킬캠 시즌2랑 강x 시즌4중에 뭘로 할까요?
-
이감 6-5 0
이거 현대소설 국물 있사옵니다 에서 새 상식 네모칸 위에 1. 물에 빠진 놈에게 돌...
-
기숙이어서.. 정신이 나갔아 봐요
-
점메추 해드려요 10
맛있는거로 해드려요
-
공부로 진정하겠음
-
ㅓㅔㅜ
-
진짜 죽어난다ㅋㅋㅋㅋ 머리가 어질어질하네
-
왜케 떨리지 0
문학 풀 때 자꾸 중심을 잃어버려서 허둥지둥하는 것 같음 그거땜에 시간이 더...
-
예열지문 2
수능날 bis 들고 가서 아침에 쓱 봤음 다른 컨텐츠 거의 안 하고 기출만 한...
-
초딩때 인피니트 노래 많이 들었었는데 이 형님도 벌써 30대시네 시간 참 빠르다
-
도 다 못맞을 정도면 심각한거죠...? ㅠㅠ 수특 레벨2나 3은 4등급이 플기엔 좀...
-
본인 방식대로 풀다가 10분 종치면OMR, 가채점 하고 나머지 풀기 or 한 파트씩...
-
언매 파이널 짧고 ㄱㅊ은 거 추천좀요
-
국장끼면 어딜가도 별로 차이 안남
-
4월중순부터 1
하루 8시간씩 순공 박은거면 사실상 재수랑 다름없나요??
-
타죽어라인줄 알았음...
-
기범비급 오류저격을 해버리시네 그러고 잠수탐
-
소문으로 들었는데.사실인가요....? 이러면 사람들 q 더 안 쓰는건가...
-
현역때 경험으로 수능날은 100% 엄청 떨릴거라는걸 아는데도 지금 이시점에서 아침에...
-
숭의여대 유아교육과 졸업하면 자격증 어떤 거 나오나요?
-
총 한발만 쏴도 되나요? 아아.. 안타깝게도 총기소지금지라서 봐주는겁니다
-
점메추 해주세요 3
-
겨울방학 12월말부터 2월초까지 쌍지만 팔 예정인데 하루 8시간 쌍지만 파면 고정...
-
하루하루가 급한데 접수대기에서 바뀔 기미가 안보인다
-
장학금 제외
-
있나요? 신기함... 보기 관점대로 접근해도 최근 문학은 쉽진 않던데
-
작년9월부터 평가원 쭉 백분위 96-99 안에 있는데 이색히 3등급 나옴 ; 뭐지...
-
ㄱㅆㅎㅌㅊ인 거 같음 읽자마자 딱 그려져야 할 거 같은데 ㅅㅂ 이게 먼소리? 하는...
-
누구있나요?
-
ㅠㅠ 또 나만 어렵지…
-
팥붕vs슈붕 7
.
-
프사 변경 확인 6
완료
-
이제 접음
-
잡고 학기병행할 생각인데 약 2년이 남았잖아요 영1 국어 백분위 91-93 고정인디...
-
상상 5-10만 1
구하는 방법 없나여
-
저도 큐브쓸래요 2
재밌어보여요
-
22 28 30 틀 하나만 더 풀면 92였는데 ㄲㅂ 아깝숑
-
어제밤에 수능 망하는 꿈 꿈..ㅋㅋ 국어에서 부터 시작해서 탐구까지 싹다 망함...
-
ㅜㅜㅜㅜ
-
병원 대기 겆나기네 10
하.. 안돼 ㅠㅡㅠ 제발 시간 아까워
-
발사.
-
연계대비나 퀄 괜찮은것좀
-
실모만박박풀다 작년꺼풀어봤는데 미적 1컷이 84...? 9모 3등급인 내가 수능에선 1등급?
-
어디가 더 위치가 좋다고 생각하시나요
-
ㅋㅋㅋㅋㅋㅋ
-
물론 아에 안걸리는게 베스트고 지금 걸린 사람들은 다행으로 생각하삼 지금 앓다가...
-
갑자기 피부가 트네 왜지
-
내년에 인설 공대 목표로 수능보는데 조합 한번씩만 추천드려요!
-
충분히 재공되나요???
-
이번 6모 수학 4
10 12 13 14 15 19 20 21 22 28 29 30 틀렸는데 (단순...
사소한 질문인데요, 저 문제는 가형, 나형 중 어디서 나왔나요?
가/나형 공통출제 였습니다.
따라서 이렇게 푸는 것은 당연히 출제의도에 빗나갑니다. 나형 학생들은 이렇게 풀 수가 없으니까요.
하지만 '엄밀하게' 서술하는 연습을 중점에 두고 쓴 글이기 때문에 의의가 있다고 생각합니다.
사소한 지적 하나 하자면, '이를 조금 더 엄밀하게 증명하기 위해서 극한의 가장 기본적인 판정법인 비교 판정법을 통해 확인해보려고 했습니다.'라는 문장에서 '비교 판정법(Comparison Test)'은 무한급수의 수렴을 판정하는 방법입니다. t/e^t의 극한값을 구하는데 사용된 방법은 '샌드위치 정리(Sandwich Theorem)'고요. 그것만 제외하면 잘 쓴 글인 것 같네요. 본받고 싶어요. ㅋㅋ 다음 글 기대하겠습니다!
아.....제가 혼동했나 보네요 ㅠㅠ...지적 감사합니다!
글에 오류가 있어 이를 수정했습니다. 저 극한을 따질 필요가 없었는데 잘못 생각해서 따져버렸네요.....
이 글을 읽고 잘못 받아들이셨다면 이를 바로잡으려고합니다.
오 ㅋㅋ 이런글 좋아요 !!