한완수 수2상편 질문드립니다
헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 피곤해 0
해곤피아
-
음식물 쓰레기 어떻게 버리냐고 물어보시네….
-
원래 의대준비하다 망해서 문과로틀었음 지망학과는 정치외교학과 세무학과 이정도이고...
-
25정원이랑 비교했을때 변동 양상이 어떻게 되나요? 26 학생 많으니까 정원 늘리고...
-
아니 제 성적으로 메가 대성 둘 다 채점했는데 일단 백분위 총합은 대성이 4~5점...
-
중2 사랑 어떰 8
엄마랑 보면 쪽팔려 디지나
-
난 늙어서 친구랑 눈사람 만들다 지쳐서 들어왔는데..
-
마이지우 https://orbi.kr/profile/1104067
-
ㅠㅠ 이거 양 때려넣는거 말곤 답없나
-
엄마가 뭐라도 하랬는데 솔직히 놀고 싶음..... 1년동안 정신병 걸리는줄 알아서...
-
모집정지 소신발언 은 어그로입니다 죄송합니다.. 나가시기 전에 제설하고 온 군인...
-
손에안잡히네..
-
적어도 1학기때보단 경쟁 훨씬 덜하죠?
-
티오 별로인 하위권 지사의 현역 예2인데 인하의대 옮김? 안 가는 게 정배긴 한데...
-
방청소해야지 2
버거킹두 시켜놨음 ㅎㅎ
-
롤이나 발로란트같은 겜 한 판하면 기 빠지고 그럼?
-
더 노래 잘 부르는 거 같은데 맞죠?
-
절 대 움직이지 않음뇨
-
수능 쌍사볼건데 1학기때 쌍사에다 경제 3개다할지 아님 1학기때 쌍사하고 2학기때...
-
나만 6문제 완전히 못품? 물론 아예 손도 못댄건 1문제고 2문제는 조금 풀었고...
-
문화시민이 되는 길은 멀고도 험하구나 여기서의 문화는 좁은 의미로 사용되었겠군...
-
충남대 기계에서 반수해서 시립대 화공이면 가는게 맞겠죠?? 4
충남대 24학번 입학해서 1년 조금 안되게 다녔습니다. 수능공부 병행했고 이번에...
-
반박시 키메라로 연성해버림
-
3.3 7
힘드러
-
D-351 공부 0
-
개꿀통인 논술을 포기하겠냐고 ㅋㅋ 논술 인원 최대한 안 줄이고 정시 인원 ㅈㄴ 줄일듯
-
집중어려움뇨 그래서 어거지로 실모 때려박음뇨
-
언젠간그가너를 1
맘아프게해너혼자울고있는걸봤어
-
“밥 한 끼 고마움 잘 알아”…익명의 기부자, 강북구에 1850만 원 전달 1
익명의 기부자가 구청에 편지와 함께 어려운 이웃을 위해 써달라며 1850만 원을...
-
자궁의 기능을 알아보자 11
이거 ㄹㅇ 맞다
-
진짜 ㄱㅁ주의 9
슈바인학센~
-
고컴 특 0
맨날 빵꾸나서 4칸인데 쓰면 붙을것같음
-
원서철 때 학과 고민되시면 오르비에만 물어보지 마시고 1
주변 지인 관련 업계 종사자분들께 여쭤보거나 Blind, 리멤버 같은 직장인 커뮤...
-
2월 월드투어 쿠알라룸프르 VIP석 먹었길래 말레이시아까지 후다닥 달려옴 8월...
-
이건 아무도 못따라옴 ㄹㅇ
-
궁금허이
-
나 올해 감 뒤지게 좋은듯 다들 재시험 아니라고 할때 시험 문제 터진날부터...
-
정병호의 독학기출 ㄹㅇ 좋았는데 사라져버렸네요.. 원솔멀텍은 좋긴한데 평가원만 있고
-
진짜 수능 끝나고가 더 힘드네 ㅋㅋ 수능 전에는 아무생각도 없었고 공부만 하면...
-
11번틀 -2해서 66점 정법 풀면서 어려웠는데 ㅠㅠㅠ 쉬웠나보네
-
일본사상물든다고보지말라하고 엄마랑 보면 주무심 애니는 혼자보는게 맞다!
-
우와 눈내린다 6
근데 ㅈㄴ춥다 헤헤
-
연고 계약이나 연고 전컴이나 거기서 거기 아님? 오히려 전컴은 회사 선택의 폭도...
-
여기로 와야함 그대신
-
중 1 여자애 과외하는데 이번주에 기말고사 끝났는데 계속 수업을 해야되네 도대체 뭘...
-
이 애비도 40퍼나 남았단다ᆢ
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.