[자작문제] 도형의 2n등분 문제입니다.
좀 더 깔끔하게 만들고 싶으나 생각보다 힘드네요. 아무튼 평가부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1일1똥은 부담스럽군
-
후회없이.
-
장학금 ㅇㅈ 0
네이밍이 좀 특이하긴 한데 연구소 차리고 과외 매출 탈세 1도 안하고 싹 다 신고해서 받음
-
그래도 가고 싶다... 이번 여름에 간 거의 60 먹은 노엘이 하는 하플버 콘서트도 좋았는데..
-
수열의 극한 자작 문제 15
일단 답은 4인데, 자작이긴 한데.. 명확한 풀이를 모르겠어서 올립니다 ㅌㅌ
-
팔로잉 천 빼기 90 인지라.... 딱히 잡담해제도 안함
-
눈알 빠질거 같아요 12
오늘 하루종일 기출같은거 뒤져가면서 유사문제 찾고 왔음
-
요즘 3
조금만 놀아도 너무 피곤함 나 수험생활 어케 버틴거지...
-
아이디어는 있는데 문제는 아이디어를 일러스트로 구현할 기술력이 없음... 내가...
-
어허 쯧쯔릇쯧쯧
-
역대로 안돌아가는 사례일듯 고장나서 안돌아가는 수준이 아님
-
음하핫
-
인강 들으면 되려나...토익밖에 안쳐봐서 감이 안잡힘
-
내년에 앞자리 바뀌신다는 이야기 들으니 둘 다 벙찜 흠..
-
2등이면 걍 합격임? 모집인원 변동 없음
-
왜 싸운거임? 대충 상황 3줄 요약점
-
나도... 2
언젠가 채영님을 실물 영접 하는날 올까..
-
나였으면 벌써 롤 친구부터 끊었음
-
같이 밥먹을사람이없고, 얘기할사람이 없다는건. . . ㅜ 딱나네
-
난 어차피 그곳에 있는게 제일 중요해서 선예매는 실패했으니 스탠딩 앞번호대는 다...
-
화1 20번/생1 17번 손해설(필요할지는 모르겠지만) 0
이제와서 올리는게 의미있나 싶지만 과외구하면서 쓴거라 한번 보고 피드백주세용 해설지...
-
지금라면먹으면 2
내일 안부으려나
-
빈지노는신이야 8
빈지노로 가득 찬 플리와 함께라면 가능이야
-
ㄹㅇㄹㅇ
-
하......
-
기출문제집 해설은 어차피 안보게 돼서 문제 선별이랑 종이질 기준으로 찾다보니 젤...
-
다른 커뮤에서 미적2틀 88이 2등급이라는데 그말만 하고 사라져서.... 구라겟죠?
-
학년에서 몇안되는 백점 받음 ㅎㅎ 후후 발표 코칭도 해줌
-
미적은 시발점 돌리는 중이고 26 버전 나오면 공통이랑 미적 다 빌드업 들을...
-
저 착해요 8
그렇죠!!??
-
한 십만원 필요한데
-
방금 핫도그 먹으면서 기분 개좋았다가 대학 예비 아직 받지도 않았는데 예비 너무...
-
진짜 세상에서 제일 애매한 내신이 3점대 중후반이라고 생각하고 시험도 거의 끝나가서...
-
내년에는 뭔가 잘볼수 있을거같음 올해 수능에서 껍질을 벗은느낌
-
일반전형만 조사했고 지역인재는 제외했습니다 본인지역만보면 몇개안되니 직접 찾아보세요...
-
이거 맞다.
-
일본어 기본으로 깔고 지2or기하or확통 고민중인데 뭐 해야하지
-
님들생각이 궁금해짐. . . 특이한것같지만. . .
-
임정환T 내신 때문에 필요한 부분만 발췌해서 리밋 듣고 있는데 그냥 한 번에...
-
그 나라의 모든 사람이 컸을때, 수도는 그나라에 머무르는역할을 하고 수도와...
-
“공부 안하면 성매매 여성보다 못해”…메가스터디 회장 발언 ‘논란’ 26
[KBS 대구] [앵커] 국내 최대 사교육 업체 대표가 대구의 한 고등학교 강연에서...
-
못하겠음 우제야 나는 잊지 않을거란다
-
신이 최우제 응원해달라고 하네요
-
질문받는다. 크....
-
이거 쉐딩스틱 맞나요??
-
때려죽여패도 3칸합은 절대안됨?
-
쪽지로 ㄱㄱ
기울기 30도 이하쪽 영역의 빗금친 사다리꼴들(첫 부분은 삼각형)을 각각 바로 옆 오른쪽 사다리꼴로 한 칸씩 이동하면 넓이가 더 증가하므로(이 때의 넓이를 T_n이라 하면, 기울기60도 이상도 마찬가지로),
S_n < T_n = [ (1+2)/2 + (3+4)/2 + ... ((2n-1)+2n)/2 ] * 2 = 2n(2n+1)/2
반대로 기울기 30도 이상 45도 이하 영역의 빗금친 사다리꼴들을 바로 옆 왼쪽 사다리꼴로 한 칸씩 이동했을 떄의 넓이를 R_n이라 하면(45도 이상 60도 이하 부분도 마찬가지로)
S_n >R_n = [ (0+1)/2 + (2+3)/2 + ... ((2n-2)+(2n-1))/2 ] * 2 = 2n(2n-1)/2
R_n / n^2 < S_n / n^2 < T_n /n^2 에서 극한 취하면(샌드위치 정리에 의해) 답은 1/2 입니다. 실제 모의고사에 내도 좋은 문제가 아닐까 생각됩니다^^
오우... 샌드위치 정리로 푸시다니.... 아이디어 정말 좋으세요. ^^ 고맙습니다.
아... 그런데 정답이 2라고 하시는거죠? ㅎㅎ
아.. 죄송합니다ㅋ 4n^2 으로 나눴다 생각하고 1/2이라 했네요. n^2 으로 나누는거니까 2!!^^