2020학년도 수능 수학 가형 30번질문
일단 해설지의 방법은 이해하였음을 미리
말씀 드립니다.
제가 궁금한 점이 몇가지 있어서 질문드리오니
수학 고수분들이 답변해주시길 바랍니다
이 문제입니다만
상황이 이렇게,
x에 대한 지수함수와 로그함수가 t라는 상수에 따라
x축에 대한 평행이동 및, 몇배로 이루어진 상황에서
"주어진 t값에 대한 a만큼의 평행이동으로 접점을 한개 만들어라"라고 이해하였습니다.
즉, x변수(함수) , t 상수 , a는 t에 대한 변수
여기서 다들 아시다시피,
접점에서의 함숫값과 기울기가 같다로 식을 두개 세웁니다. 접점(k)라 두자.
이후로, 식을 미분하여 튀어나온 a의 속미분을 활용하여 f프라임t를 구하고, k는 위아래에 존재하는 식을 잘 연립하여, 소거하면 문제의 답이 나옴을 알 수 있습니다만,
저는 여기서.
ㄴ 식에 ln을 취하여 a즉 f(t)를 직접 구하고자 합니다.
이 식을 a=t~~에 대하여 정리하여 표현한 뒤,
k를 잘 소거하면( 접점의 좌표, 상수이므로)
f프라임 t를 구할 수 있을거라 생각 하였습니다.
계산 실수 발견으로 밑에 사진으로 대체
그래서 식을 정리하였습니다만, 여기서
질문이 두 개 있습니다.
1. k는 t에 대한 함수인가? 그냥 상수인것인가
=>미분할때 k를 어떻게 처리할지가 조금 헷갈립니다.
2. k의 값을 어떻게 제거할까?
k의 좌표를 정확히 알면 좋겠지만,
이 관계식 밖에 모르므로, 어떻게 접근해야 할 지 막혀 버렸습니다.
조언 및 오류를 찾아주실 분을 찾습니다.
도와주세요 수학고수님들..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무물할래 0
집가서 답변하겠음 ㄱㄱ
-
이건 진짜라는거임
-
댓글로 이모티콘 다는거 존1나 귀엽다ㅜㅜ
-
흠..
-
이젠 내 얼굴 아는 사람도 거의 없음
-
언매 1컷 0
언매 공통 -9틀이면 무조건 2라고 봐야 하나요?? 아니면 그래도 1컷에 걸칠까요...
-
분명 국어까진 긴장했고 수학 다 풀고 올해 가겠다라는 느낌이 들었는데 점심시간에 답...
-
소개팅해보고싶다 5
근데 주선자가 욕 ㅈㄴ 먹을 듯...
-
ㅇㅈ메타는 재밌구나..
-
ㅇㅈ 7
이렇게 생김.
-
빨리 누가 ㅇㅈ메타로 정상화좀
-
만약에 사문하면 3
메가는 윤성훈밖에 없음? 윤성훈 듣기 싫은데
-
뭐하고지낼까
-
다들 어떻게 생각하심
-
입결 제일 낮은과 써도 고대는 어려울까요?
-
국수영지구사문 (언매 미적) 표준점수 예상 131 131 2등급 61 67 원점수...
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
첫담기념 질받 20
반가워요 선넘도괜찮으니 질문해주세요
-
이러면 2컷 80밑은 확정인듯
-
육군 군수 2
12월 9일 입대 입대전 지2 개념한바뀌 할말? 사실 근데 군수할지말지도 확정 못 하긴 함..
-
ㅇㅈ 5
ㅂㄱㄸㅂㄱ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
일어나자마자 6
펑펑
-
내가 보고 놀라서 던져버림 휴
-
의치한약수/설높공~낮인문까지 서로 섞여서 잘 모르겠음
-
ㅈㄱㄴ 평가원 중에도 선별한 건지 모두 넣은 건지 궁금해요
-
ㅇㅣ제 오르비만 할게요
-
올해는 수능 기준 3합5에 80퍼 3합 4에 100퍼 준 거 같던데
-
2020년이 엊그제 같다 코로나가 엊그제 같다 03년생들 22수능보러갈때 중학교...
-
인증하면 15
아무도 안보겠지..
-
아 ㅅㅂ 나 뭐했냐
-
125명 중에 3등떠서 안정 나오는디 방심 ㄴ?
-
ㄹㅇ ㅇㅈ 11
ㄹㅇ 올해 초에 난 내가 20살을 이렇게 보낼 줄 몰랐지
-
왜 오르비하노 ㄹㅇ
-
아 손목아파 4
얼불춤을 너무 열심히 했나
-
공통만 틀 원점수 80보다 공통 안 틀린 80미만 원점수가 표점 높게 나올 수도 있나요
-
쿠쿠웅
-
김범준T 인강 0
수1, 수2는 차영진T 십일워로 한바퀴 돌렸고 십일워크북이랑 쎈B 정도 풀었으면...
-
-7 -2까지는 1 걸리지 않아요? ebs가 표점 제일 끄트머리 걸리는 것중에...
-
붙으면 장땡아녀?
-
07임 뭔가역전된느낌임... 07이05한테...
-
종합 두개나 떨어지니까 남은 4개도 불안해지네ㅆ,,,, 희망은 고대 뿐. 붙여줘 제발
-
수능일기준 50일전 즉 9월25일로 돌아간다치면 그때 수능까지 시간이 짧았었던 것...
-
제곧내 아는사람 제발 댓글좀 써줘요 ㅠㅠ
-
과탐만 잘봤어도 ㅎ
-
메디컬은 가야되서 과탐은 해야되는데 진짜 뭐하죠 물리는 아예안해서 째끼고 화1...
-
이땐 참 어렷구나
-
ㄹㅇ임?
우변에서 ln2는 괄호 밖으로 나와야해용
아 감사합니다!
ln(k-t)=1/(k-t) 에서 'k-t'의 값이 상수입니다. 따라서 k는 t값에 따라 변하는 변수입니다.
지적 감사드립니다. 혹시 이 방법으로는 풀이를 끝까지 진행 못할까요?
가장 마지막 식에서 양 변에 (k-t)를 곱합시다
이때 ulnu=1을 만족하는 상수 u는 유일합니다. 이런 u에 대하여 k=t+u입니다
그 다음 이걸 싸그리 식 ㄱ에 대입합니다
혹시 다시 한 번 설명 해 주실 수 있나요?
k는 t에 대한 변수이므로
ulnu=1을 만족하는 u가 상수니까
k-t = u상수라 두고,
k= t+u를 대입해서 정리하면
u상수 t는 미분 가능하므로
k에 대한 미분처리가 가능해진다는 말씀이신거죠?
그렇습니다. dk/dt = 1이고 그것보다는 식 ㄱ의 k자리에 싸그리 t+u를 대입하는게 나을겁니다