수리. 나 질문요ㅠ
이번중앙유웨이 수리나 21번문젠데ㅜㅜ풀이를봐도이해가안되네요ㅜㅜ설명좀해주실분?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혹시 동국대 전자과 수시로 쓰신 분들 질문좀 가능할가요? 1
제가 지금 내신등급이 2,3등급이 많은데.. 둥국대 상위10과목 이면 직접...
-
하냥이 18
너무 귀욥
-
쉬운편인가요?
-
ㅅㅂ 애들이 ㅈㄴ 틀딱 취급하는데 서러워서 어케 살어
-
사탐런이니 지학이니 뭐 이상한 조합이나 이상한 메타도 결국 남들이 하나둘 하기...
-
토익부터 조금씩 8
공부시작해야겟군..근데 뭘로하지
-
임싱했어? 4
어..
-
내신망해서 내신다시만들고싶은데
-
맘만 먹으면 누구나 성별전환 가능한 사회에서 여성욕하는건 어불상설 욕할시간에 여자가...
-
낮공 상관 없이 최대한 어디까지 갈 수 있을까요?
-
⭐ https://forms.gle/hNQQ4e2kbGftj49x9 다름이 아니라...
-
ㅇㅇ?
-
25수능 패스랑 26패스 둘 다 샀는데 기존에 듣던 강의가 내려갔길래 문의해서 수강...
-
07인데 뭐 입시자료부터 인강 다 모르겠어요.. 인강 커리는 언제부터 뜨는지도 모르겠고요..
-
ㅇㅇ 폰중독자임
-
물부으면 물이 스르륵 사라지고 동전이 물티슈로 변신해요 나만 신기해?
-
학원 드디어 퇴사 23
너무 힘들었다 진짜.. 지방이라 잘하는 친구도 몇 없고 수상수하수1수2미적확통...
-
다들 문디컬 갈 거면 언매 미적 해야한다던데
-
롤체 다1찍었다 0
마스터 가보자
-
고1 내신 원하는대로 나올때까지 재도전 하는게 의대 정시 재수 삼수 하는것보다 훨씬 나아보임
-
6평때 메가가 미적 84로 잡았는데 실채 80이었다는거임 항상 실채점 컷이 업체...
-
나가기 귀찮다 10
사실 지금도 약속시간 늦음
-
서성한 내려치기해서 미안하다 훌리들아
-
어디가 더 나은 선택지임? 목표는 높2업 화1 20번 남기고 3분 남았는데 각이...
-
어차피 삼수이상 할거면 고등학교 다시 다니는게 낫지 않음? 5
의대 수시 비율보면 아무리봐도 그게 더 나아보이긴함
-
왜냐면 교수님들도 포기하신거지 ㅋㅋ
-
키잉이이
-
Iq 검사 결과 12
하나만 왕 높은 듯하다..
-
김범준 정병호 0
1 김범준 현강 공통 가는데 기출 다루나요?? 2 정병호 미적 현강 가는데 뉴런이랑...
-
의대지망인데 정시 노리는거 자체가 이미 늦은거 아님? 0
수능 3등급 받아놓고 의대 합격한 수시충들이 이와중에도 조용히 의뱃달고 꿀빠는거 보면 좀 역겹긴 함
-
예비 고3 수학 1
고2 모고 풀면 1~18 22~27 까지는 푸는데 19는 손을 좀 대도 20 21...
-
과외를 전업으로 하는 거에 대해 어떻게 생각하시나요? 30
다양한 의견을 들어보고 싶어서 질문 남깁니다 물론 안정성 면에서 과외를 전업으로 할...
-
ㅠㅠ
-
메디컬 과1사1이면 지원 자체는 다 할 수 있는 건가요? 0
진짜 몰라서 하는 말임뇨 사2랑 똑같나요?
-
수능 당일 패스 판매량 최대 ㄷㄷㄷㄷ
-
걍 ㅈㄴ 스트레스 받어 하…..
-
메디컬,계약학과 제외 입결이 가장 높은과가 어디인가요??
-
심심하다 0
ㅇ ㅠ ㅇ...
-
한화가 제바딜을 들고 40분동안 이어가고 있는거보면 그래도 나름 잘 버티는것 같다
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
의대가고싶으면 선택과목 결정보다, 인강 추천같은거보다, 수시나 지역인재 찔러넣기...
-
여르비 분들 14
남자 키 164-5에 모든 게 평범하면 이성으로 죽어도 안 보임?
-
감복구 어케할까요 한달전에 기출 까다로운4점도 꽤...
-
왜이렇게 질질 끌리냐
-
이감오프랑 매월승리 현역이 병행하기엔 힘들까요? 국어가 많이 약해서 올리고싶어요...
-
중세국어부터 썼음
-
??:n일만에 사문 고정1인데~ 볼 때마다 대가리에 포크를 꼽고 싶었음
-
현역들한테유리한거일수도있음
-
개불안함 ㅈㅉ로
1번인가요?
t의범위를 0보다 작을때 0일때 0보다 클때로 구분해서 하면나오느데 ㅠㅠ 직접 그려서설명해야돼요 ㅠ
대칭축이 x=a가 나오는데 대칭축이 어디 있는지 직접 그려보시면서 하시면 답 나오실거에요
2^x =t 라고 합시다. 그러면, t는 항상 양수이므로,
모든 실수x에 대해서 4^x - a 2^(x+1) +4 >=0 이 성립 <===> 모든 양수t에 대해서 t^2 -2at +4 >=0 이 성립.
f(t)=t^2 -2at+4 라고 합시다. f(0)=4니까, y절편이 4인 (아래로 볼록한) 이차함수. 위엣분 말씀처럼 대칭축은 t=a.
(1) a<=0인 경우: 양수t에 대해 f(t)>=0는 자명하므로 모든 a<=0가 가능함.
(2) a>0인 경우: 대칭축 t=a가 양수 범위에 있고 t=a에서 최솟값 가지므로 판별식 적용. a^2 -4 <0=. 즉 -2<=a<=2. 그러므로 0
감사합니다 ㅎㅎ
저그런데 a <=0 인경우 왜 f(t)>=0인게 자명한지 알수 있을까요 ㅠㅠ
a<=0이면 대칭축이 음수쪽(2,3사분면)에 있다는 이야기이고, 대칭축으로부터 멀어질수록 점점 함수값이 커집니다. 그런데 이미 t=0일 때 함수값이 4이고, 따라서 t값이 더 커질수록(양수쪽으로) 함수값이 4보다 더 커지겠지요. 그니까 f(t)>=0은 자명하고 사실 4초과인 것도 당연하게 나오지요.