3차함수 문제 풀어보세요~^^
작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가끔 0
대수위상 전공을 하거나 전공을 희망하고 있는 사람들 대화를 엿듣다 보면 대체...
-
공시 3등급정도? 상위 20프로 정도로 공부하더ㄴ 언니가 대학은 제일잘감...
-
1학기 일반휴학 신청기간 2/3~2/25까지 입니다!
-
사문 과외라,, 1
누구보다 잘할 자신 있다고 자부하고 또 성적으로도 증명 가능합니다 ㅎ (24수능...
-
150점 200점 맞을 사람들 겁나 많을듯 ㅋㅋ
-
서강대 합격생을 위한 노크선배 꿀팁 [서강대 25][새내기 꿀팁 : 새내기 OR] 0
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
외움?
-
기출 푼다 0
ㅇㅇ
-
뭐가다른거에요?
-
진짜 아무것도 안해서 좀 걱정되는데 님들은 뭐하고 지냄?
-
곧 진행될 LCK CUP 그룹전 제 23경기 T1 vs GEN.G에서 T1이 1)...
-
공부하면서 절망의 절정에 다다를때 대가리 깨질때가 옴 그때를 이겨내고 공부하면...
-
기구하다 1
기구하다
-
난 다함항수 정복하기 만든적없는데
-
오아시스 내란도 신기한데 쟤네도 오는 건가
-
반수해서 의대 가려고 하는데 뭐해야 함? 04고 25수능 언매 미적 화1 생1...
-
그냥 수험생 한번 더 한다 생각하고 메가패스 살려고요 ㅋㅋ 얘기해주시는것들...
-
나만 뻘글마냥 그런 뻘얘기하나….. 연락내역만 보면 인간같지않음
-
보넥도 입덕함 1
후...
-
국어는 고정100 수준인데 단어를 몰라서 이러는건가
-
세계사 화1 2
.
-
크럭스 서대원 컨설턴트님은 메디컬쪽 보시는 컨설턴트분이신가요?? 2
아시는분??
-
몸살 넘 싫다 3
으..
-
그냥 담요단 하나 잡아다가 표랑 채점형만 벅벅 풀어 주고 싶음 이게 제일 마음이 편해
-
다 배신자의 싹이다
-
다음 칼럼은 지구과학 2 과목이 어떤 느낌인지 간결하면서도 얕지 않게 직접 기출을...
-
즛토마요 신곡 6
이걸 이제야 들었네
-
옴뇸뇸
-
1주일만 1
현생살고온다 ㅂㅂ
-
얼버기 기상 8
안냐세요
-
점유소유, 헤겔, 브레턴, 에이어 더 있을텐데 기억이 안난다 + 할매턴도 별 5개
-
남중 남고 루트 말고 있을 수가 있나
-
ㅈㄴ걍 애매한게 많음 수능에 안나와~라고 하기에는 좀 그렇고 설명하기가 어렵더라구요
-
아니시발 티젠전 2
고삼인데 lck 도 끊어야겟지
-
개념 vs 심화 문제 풀이 전자보단 후자가 수요가 있겠죠? 받아보신분들이나...
-
생글은 들으면서 뭔가 얻어가는느낌 들어도 에필로그는 진짜 그냥 풀면서 되게 쉬운...
-
칼럼 주제 정리할 겸 많은 분들의 의견이 궁금해서 올려봅니다. 2025 2월 최신...
-
분명 수험생커뮤인데 공부얘기 많은게 이상함
-
쌈무나보고가라 2
-
그래도 과외는 얼마를 줘도 자신이 하나도 없음 (수능은 만점) 사탐 과목은 관련...
-
사문 일주일 공부하고 모의고사 10번 치면 40점대는 빈번하게 나올듯 근데 결국...
-
중앙대 약대 교과 2025 입결 아시는 분 있으신가요? 합격자 계시다면 중앙대식...
-
열등감은 치료약 없나 12
열등감 덩어리라 슬프네
-
예를 들어서 담화표지를 사용하여 문단간의 연결관계를 드러내고 있다 이게 선지면...
-
Official HIGE DANdism- Parabola(포물선)
-
돌돌물 0
돌고 돌아 물리로
-
치돈 시켰는디 1
개맛있어어
-
국수영탐 과목별로 어느정도 되어야 과외할 수 있을까요 6
그래도 암묵적인 컷이 존재하는 법이니까요 고2~고3 기준으로 했을때요
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??