양자역학 칼럼_ 기초-이론체계 1
여기서는 양자역학을 이루는 기초체계를 알아보자.
1. 헤르미트 연산자(Hermitian Operator)
함수의 내적은 다음과 같이 정의 된다.
또한 분명히 다음의 성질을 만족할 것이다.
(여기서 *는 헤르미트 켤레를 의미)
이제 파동함수를 도입해 보자. 당연히 어떤 관측가능한 물리량의 평균값은 결정가능할 것이고,
다음과 같이 정의된다.
이는 얼핏보면 매우 간단해 보인다. 하지만 수학적 체계는 그러하지 않다. (결론적으로 물리적 체계는 간단해질 것이다.) 여러분들이 생각한것처럼 우리는 이 연산자의 평균치 만 알 수 있다. 왜?
당연하다. 연산자의 상태 자체를 미결정상태라고 보는것이다. 원래의 파동함수에 아무런 외적 변형을 가하지 않으면, 우리는 물질의 형태, 위치, 운동량 등을 결정 할 수 없다. 결정가능한 경우는 오직 파동함수가 무너졌을 때(The Collapsed Wave function)뿐이다. 아래그림을 보라.
위 그림은 붕괴되지 않은 상태의 파동함수이다. 보이다 시피 어디에서든지 존재할 수 있다. 반면 아래의 붕괴된 파동함수를 보라.
국소적인 경우에만 존재할 수 있다. 위치가 결정된 것이다. 하지만 운동량은 어떤가
파동함수의 기울기가 무한대로 가므로 운동량은 발산 함을 알 수 있다. 즉, 운동량과 위치를 동시에 잡을 수 없다. 이것이 그 유명한 위치-운동량 불확정성의 원리(하이젠베르크 불확정성)이다. 이것을 차근히 증명해 나갈 것이다.
다시 헤르미트 연산자로 돌아와라. 말하고자 하는 바는 결국 측정가능한 물리량은 실수값만을 가진다는 것이다. 즉, 다음과 같이 된다.
우리는 이런 성질을 만족하는 연산자를 헤르미트 연산자라 부른다.
2. 결정된 상태(Determined States)
이태까지 우리는 헤르미트연산자에 대하여 알아 보았다. 분명, 파동함수로는 위치를 비롯한 많은 물리량들이 보장되지는 않는다. 하지만, 유의하라!! 이것이 의미하는 것은 관측에 의한 '섭동'이 이루어 지지지 않으면, 위치/운동량 등의 물리량이 결정되지 않은 상태로 존재한다는 의미이지, 동일한 앙상블의 입자계가 같는 물리량이 변한다는 뜻이 아니다!
즉, 동일한 앙상블의 측정을 반복해서도 물리량들의 고윳값이 바뀌지는 않는다. 이것은 다음과 같이 기술된다.
이 값이 0이 된다. 이러한 상태를 우리는 '결정된 상태에 있다' 라고 하고 정해진 값 q를 고윳값(eigenvalue)라 한다. 그 상태방정식은 위의 식보다 더 간다하게,
라고 나타낸다. 이제 불확정성의 원리를 나타내어 보자.
3. 일반화된 불확정성 원리(The Uncertainty Principle)
앞에서 구했다 시피, 임의의 물리량의 분산은 다음과 같다.
여기서 새로운 함수 f 를 다음과 같이 정의 하자.그러면, 다음과 같은 식이 성립한다.
한편, 복소수의 기본성질을 이용하면 부등식을 더 간단히 할 수 있다.
이 형태의 식은 어쩌면 최종결과에 도달한 것처럼 보인다. 하지만 우리는 더 잘 할 수 있다. 위의 부등식을 연산자 A, B로 나타내보자. 한눈에 보기에 이것은 사태를 더 악화시키는 것처럼 보인다. 하지만 각 항들이 상쇠되어 더 간단해진다. 직접 시도해 보아라.
결론부터 제시하겠다. 다음의 교환자 관계를 가진다.
여기서 []는 교환자를 의미한다. (이 경우, 교환자에 질문이 있는 분은 따로 질문해 주시오)
일반화된 불확정성의 원리: 이제 A, B대신 위치와 운동량을 넣으면 우리가 아는 '위치-운동량 불확정성원리'를 얻는다. 시도해 보라.
여기서 가장 중요한 것은 등호성립조건, 즉, 최소불확정성 상태를 찾아내는 것이다. (최소불확정성을 가질 때, 파동함수는 어떤 형태의 함수를 가지겠는가?)
-맞추신 분에게는 칭찬을 드립니다.
이것으로 양자역학 기초과정 칼럼 1부를 마침니다.
예정
양자역학 칼럼 기초과정 1. 이론체계
2. 기본모델
3. 슈뢰딩거 방정식
중급과정 1. 시간에 무관한 섭동론(Time-Independent Purturbation Theory)
2. WKB 근사법
3. 시간에 관계있는 섭동론
4. 산란이론(Scattering Theory)
고급과정 1. 상대론적 양자역학-디랙의 방정식
-전자의 스핀자기모멘트와 g-factor
2. 제만효과(The Zeemann Effect)
질문은 언제나 환영입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 국어가 낮3임. 진짜 국어 때문에 정신병올거같아.
-
조발난김에 신청해놨는데 되면 재밌을듯 ㅋㅋ
-
넷플릭스 있는 사람들은 필히 꼭 보도록 오프닝이 특히 개맛도리임..
-
같이가면 존나 빨리마심
-
귀엽지? 15
거위 6마리 근데 유튜브에서 보니 거위도 사납더라
-
사유:존나 잘생김+고려대(오르비식마인드 ㅋㅋ)
-
의대vs로스쿨 4
밸런스게임인데 밸붕인거같기도하고...
-
1. 용인 가기 싫다. 2. 공대에 뜻이 없고 배운다 해도 자연대인 생물학 지리학...
-
아침공부 2
6시 반에 완전 일어나자 마자 공부하는데 그 때 국어를 하는게 맞나요?? 아니면...
-
트럼프는 이런 말 한적 없음 제목만 합성한 가짜뉴스인데다 보도지침상 창녀촌이라는...
-
4반수 어케생각함 확통사탐으로 자연대가자^^
-
존재하지 않으려나??
-
댓글좀
-
왤케 빡세보이냐 하루종일 수학만 해야하나
-
후훗! 0
-
내 얼굴이 죄다
-
산에서 자빠져서 0
엉덩방아 찧음 ㅈㄴ미끄럽네 바닥이 푹신해서 아프지는않은데 ㅈㄴ미끄러움
-
뭐가 더 좋음?
-
N수한 이유/공부를 열심히 했던 이유가 무엇인가요 40
저는 확고한 진로가 없어서 대학 라인을 높이고 싶었고 공부에 있어 제 한계가...
-
수능 24244 8
이 정도면 과외할 수준됨?
-
난 울지 않..ㅇ ㅏ 14
-
이건뭐여 0
릴스에 뜬 영상인데 충격도 잠시 궁금해지는거 연대가 안암까지 간걸까 고대가 신촌까지 온걸까
-
에약 붙음 ㅇㅇ 12
저거 장학뭐냐 에리카 약대 수석맞는거?
-
이 친구는 의리로 1학기 끝날때까지 하면 그전엔 안올릴듯;; 다음엔 최소 35이상은...
-
쎈B단계 푸는데 너무 많이 틀리는 것 같을 때 어떻게 하죠
-
피자먹을까 2
흐움 그냥 돈아끼는겸 집에잇는거먹을까..
-
스캠같아보여서 안씀 원광 한약 6칸 최초합권이었는데 지방대 + 비메디컬 + 미래...
-
근데 수시러라… 오르비 사람들한테 내 수능 성적 말해줘두 안 믿더라 생기부 준비...
-
방금도 고대생이 자기소개(?)막 하는 영상 떠서 보고왔는데 부럽네영
-
수특은 절대적인 국어 실력에는 크게 도움 안 되나요 31
연계로써 쓰일 뿐인가... ㅈㄱㄴ
-
논술 준비 1도 안햇는데 학원에서 강제로 시켜서 근데 듣진 않음 딱 한문제 들엇는데...
-
외국어 컴퓨터 공부 해야하는데 귀찮다...
-
본인은 국어,영어 성적이 압도적이고 수학,과학 말아먹었는데 취직이랑 재미 때문에...
-
?
-
KY합격증이 제일 맛있는데 빨리 보고싶음뇨
-
노베랑 다름없나요
-
소신발언 0
1, 2등급 나오는 과목 가지고 노베호소인 하는건 자존감이 심각하게 낮거나, 심각한...
-
수학만하고싶은데 4
국어영어다유기할까 솔직히 지금 유기할실력도 없어서 상관없을것같은데 한 3월까지...
-
왜아직도안하지?? 내일발표인데
-
내가 봐버렸다
-
지극히 개인적인 생각 수리논술 뚫는 거 걍 경이로움
-
250115 기출2009가 속도 조절 shift + 부등호 다음 문항 ctr +...
-
동일과탐 물리1 물리2 선택해도 약대 진학 가능한가요? 2
사교육에서 일하다가 일을 병행며 수능 다시 쳐서 약대 진학하고 싶은 사람입니다...
-
현실 노베 : 전과목 6등급 이하거나 노베인 과목이 공부란걸 해본적없음 오르비식...
-
대기업 다니면서 1억 받는다 하면 당연히 세전이라 세금 떼고나면 6천따리인데 의치한...
-
흠냐뇨이..
-
또는 독학재수 하는 분들 요즘 종일 공부하세요?
-
저수지가 ㅈㄴ큼
그림은 Introduction to Quantum Mechanics, 2ed, David . J. Griffiths
수식은 LaTeX로 작성함
전공 물리쪽인데 하나도 못 알아먹겠당
양자가 3학년 편성이라 그런듯 싶습니다
과고라서 물올 겨울학교하면서 알게됐죠
ㅋㅋ 별거 아니지만 좋게 봐주셔서 감사해요
문제2 제가 제시한 일반화된 불확정원리는 자명한 식일까요 아닐까요?
글제목 양지역학이에요
variational method랑 Ads/CFT도 있나요
학부과정만 한거라 나머지는 잘 모르겠습니다.
글쓴이님 goat 이시네요 ㄷㄷ;;
더 관심 있으신 분들은 여기를 참조하시면 됩니다.
https://horizon.kias.re.kr/archives/allarticles/naturalsciences/%eb%af%bf%ea%b8%b0-%ed%9e%98%eb%93%a0-%ec%96%91%ec%9e%90-incredible-quantum/
과학, 수학 등 다른 과목 관련 칼럼은 여기를 참조하시면 됩니다.
https://horizon.kias.re.kr/
카이스트 재학생입니다(인증가능합니다)
혹시 일본 대학 문제들은 직접 번역하시는건가요?
네 . 다만,바로번역하지 않고 조금더 스무스한 해석을 위해 제가먼저 풀어본 후 해석을 답니다.