[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여론보니 다른 사람들도 짜다고 생각하는구나
-
종강을 바란다
-
면접을 당차게 잘봐서 바로 붙은듯요 ㅎㅎㅎ 꿀팁 부탁.. 넘 떨림
-
확통1컷몇예상요 9
전94요
-
현우진 t오티에서 이번 수능 19번까지 25분안에 무난하게 풀면 26수능 풀어도...
-
미적77은 6
26뉴런 해야한다고생각함?
-
외대 가능할까요??어디 쓸지 추천 부탁드립니당
-
나만 요새 게임 노잼인가 나이 먹어서 그런듯
-
개정 시발점 1
15 개정 시발점 샀는데 이번 수능 보거든요 ㅜ... 22개정으로 또 사는게...
-
이번 수능에서 전체적으로 기대보단 못쳐서 중경외시? 갈거같습니다. 반수할거같은데,...
-
서성한 써보신 분들 13
언확쌍윤이고 메가 기준 백분위 90 93 1 97 98 인데요 진학사에서 성대 냥대...
-
나중에 시간되면 국어공부하면서 든 생각이나 태도 쭉 적어볼까요?
-
이미 씻어서 굉장히 고민됨...ㅜㅜ
-
침대 누웠더니 2
허리가 갑자기 아프네
-
참 좋은 말이야
-
설마 엄마가 덥다고 안하겠지
-
생1 지1인데 둘다 버리고 사탐으로 사문 정법 생각중인데 이게 맞을까요?
-
다시는 그대와 같은사랑 없을테니 잊지않아요 내게 주었던 작은 기억하나도 오늘도...
-
옆구리만 시리네
-
기차지나간당 2
아프니까 잔다
-
총합 8등급 상승 성공한것 같습니다 평백 70 중반대에서 92.5~93.2까지...
-
거수투표가 왜문제임여?? 대충 말만들으면 좀 요상해보이긴 하는데 그렇다해도...
-
전반적으로 정답률 꽤 낮고 단일 문제가 역대급 정답률이라 만점자가 꽤 적을고같은데 …
-
ㅈㄴ 들어보고싶음,, 근데 수능판도 뜨고싶은데
-
미적은 다 12월 말 아님 1~2월이네.. 현강 개강이 그때고 업로드하는거 생각하면...
-
을 해보지만 먼가 물어볼게 없을듯
-
이걸 볼 때마다 1
https://orbi.kr/00068125009 먹튀하고파요
-
낮 2시에 자서 7시에 일어나고 새벽 4시까지 안 잠
-
집가서 마크할까 2
-
ㅇㅈ 3
야식
-
힐링게임 뭐 없을까 22
-
본죽만 챙겨갔는데 차가웠지만 억지로 꾸덕한 죽을 꾸역꾸역 먹은 느낌
-
2025 뉴런에서는 상상도 못하던 현우진의 싱글벙글 드립 ㄷㄷ
-
백분위 메가 기준 언매 87 미적 74 영어 3 한지 92 사문 74
-
솔직히 메가패스 이제 10
N수생 할인 20만원해주면 안 되냐 흑흑
-
샴페인은 왜 2
C로 시작하냐 s가 아니라ㅋ
-
현우진 시발점 0
07년생 26수능 준비하는 정시러인데요 26수능은 15교육과정이이니깐 그냥...
-
왜 또하는거지 대체 어디까지 퍼주려는거냐앗
-
제가 이제 고3 인데 우진T 풀커리를 탈려고하는데 원래 시발점 했던 사람도 개정...
-
미적과탐이고 국수영탐1탐2순으로 백분위 80 98 3 88 93 이과인데 서성한...
-
오티 들어봤는데 22개정임에도 불구하고 이걸 26수능때 하라는 이유도 모르겠고...
-
육군 군수 1
운전병으로 입대 예정인데 궁금한게 아이패드가 안되면 군수를 어떻게 해요? 인강을 아예 못보는건가요?
-
그래야 마음이 편함.
-
집 도착 2시 예상
-
돌아와...
-
동덕여대 0
덕성여대 서울여대
-
영역 원점수(공통/선택) 등급 표준점수 백분위 국어 언어와매체 80 (62+18)...
-
ot 보니까 다시 인간된 것 같고 뉴런도 개정된다니까 괜히 고민되네…걍 스블 들으려고 했는데 ㄹㅇ
-
천둥번개 ㅅㅂ
오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^